Skip to main content
Log in

H2O2 Mobilizes Ca2+ from Agonist- and Thapsigargin-sensitive and Insensitive Intracellular Stores and Stimulates Glutamate Secretion in Rat Hippocampal Astrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of hydrogen peroxide (H2O2) on cytosolic free calcium concentration ([Ca2+]c) as well as its effect on glutamate secretion in rat hippocampal astrocytes have been the aim of the present research. Our results show that 100 μM H2O2 induces an increase in [Ca2+]c, that remains at an elevated level while the oxidant is present in the perfusion medium, due to its release from intracellular stores as it was observed in the absence of extracellular Ca2+, followed by a significant increase in glutamate secretion. Ca2+-mobilization in response to the oxidant could only be reduced by thapsigargin plus FCCP, indicating that the Ca2+-mobilizable pool by H2O2 includes both endoplasmic reticulum and mitochondria. We conclude that ROS in hippocampal astrocytes might contribute to an elevation of resting [Ca2+]c which, in turn, could lead to a maintained secretion of the excitatory neurotransmitter glutamate, which has been considered a situation potentially leading to neurotoxicity in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Araque A, Carmignoto G, Haydon PG (2001) Dynamic signalling between astrocytes and neurons. Annu Rev Physiol 63:795–813

    Article  PubMed  CAS  Google Scholar 

  2. Haydon PG (2001) GLIA: listening and talking to the synapse. Nat Rev Neurosci 2:185–193

    Article  PubMed  CAS  Google Scholar 

  3. Koizumi S, Fujishita K, Tsuda M et al. (2003) Dynamic inhibition of excitatory synaptic transmission by astrocytes-derived ATP in hippocampal cultures. P Natl Acad Sci USA 100:11023–11028

    Article  CAS  Google Scholar 

  4. Braet K, Cabooter L, Paemeleire K et al. (2004) Calcium signal communication in the central nervous system. Biol Cell 96:79–91

    Article  PubMed  CAS  Google Scholar 

  5. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signalling function. Physiol Rev 78:99–141

    PubMed  CAS  Google Scholar 

  6. Duchen MR (2000) Mitochondria and Ca2+ in cell physiology and pathophysiology. Cell Calcium 28:339–348

    Article  PubMed  CAS  Google Scholar 

  7. Jung S, Pfeiffer F, Deitmer JW (2000) Histamine-induced calcium entry in rat cerebellar astrocytes: evidence for capacitative and non-capacitative mechanisms. J Physiol London 527:549–561

    Article  PubMed  CAS  Google Scholar 

  8. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol London 522:335–344

    Article  CAS  Google Scholar 

  9. Rosado JA, Redondo PC, Salido GM et al. (2006) Calcium signaling and reactive oxygen species in non-excitable cells. Mini-Revs Med Chem 6:409–415

    Article  CAS  Google Scholar 

  10. Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    Article  PubMed  CAS  Google Scholar 

  11. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  PubMed  CAS  Google Scholar 

  12. Metodiewa D, Koska C (2002) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233

    Article  Google Scholar 

  13. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  14. Dallwig R, Deitmer JW (2002) Cell-type specific calcium responses in acute rat hippocampal slices. J Neurosci Meth 116:77–87

    Article  CAS  Google Scholar 

  15. Beck A, Nieden RZ, Schneider HP et al. (2004) Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium 35:47–58

    Article  PubMed  CAS  Google Scholar 

  16. Rodríguez-Moreno A, Sihra TS (2004) Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus. J Physiol London 557:733–745

    Article  PubMed  CAS  Google Scholar 

  17. Decker T, Lohmann-Matthes ML (1998) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Methods 15:61–69

    Google Scholar 

  18. Vestergaard HT, Vogensen SB, Madsen U et al. (2004) Analogues of homoibotenic acid show potent and selective activity following sensitization by quisqualic acid. Eur J Pharmacol 488:101–109

    Article  PubMed  CAS  Google Scholar 

  19. Ireland DR, Guevremont D, Williams JM et al. (2004) Metabotropic glutamate receptor-mediated depression of the slow after hyperpolarization is gated by tyrosine phosphatases in hippocampal CA1 pyramidal neurons. J Neurophysiol 92:2811–2819

    Article  PubMed  CAS  Google Scholar 

  20. Humez S, Legrand G, Vanden-Abeele F et al. (2004). Role of endoplasmic reticulum calcium content in prostate cancer cell growth regulation by IGF and TNFalpha. J Cell Physiol 201:201–213

    Article  PubMed  CAS  Google Scholar 

  21. González A, Schulz I, Schmid A (2000) Agonist-evoked mitochondrial Ca2+ signals in mouse pancreatic acinar cells. J Biol Chem 275:38680–38686

    Article  PubMed  Google Scholar 

  22. Mattson MP, Chan SL (2003) Neuronal and glial calcium signalling in Alzheimer’s disease. Cell Calcium 34:385–397

    Article  PubMed  CAS  Google Scholar 

  23. Xu J, Yu S, Sun AY et al. (2003) Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radical Bio Med 34:1531–1543

    Article  CAS  Google Scholar 

  24. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes-requirement for stored Ca2+ and sustained opening of the permeability transition pore. J Cell Sci 115:1175–1188

    PubMed  CAS  Google Scholar 

  25. Sánchez S, Fernández-Belda F, Soler F (2004) Functional effect of hydrogen peroxide on the sarcoplasmic reticulum membrane: uncoupling and irreversible inhibition of the Ca2+-ATPase protein. Arch Biochem Biophys 431:245–251

    Article  PubMed  CAS  Google Scholar 

  26. Henschke PN, Elliott SJ (1995) Oxidized glutathione decreases luminal Ca2+ content of the endothelial cell Ins(1,4,5)P3-sensitive Ca2+ store. Biochem J 312:485–489

    PubMed  CAS  Google Scholar 

  27. Pereira C, Ferreira C, Carvalho C et al. (1996) Contribution of plasma membrane and endoplasmic reticulum Ca2+-ATPases to the synaptosomal [Ca2+]i increase during oxidative stress. Brain Res 713:269–277

    Article  PubMed  CAS  Google Scholar 

  28. Viner RI, Krainev AG, Williams TD et al. (1997) Identification of oxidation-sensitive peptides within the cytoplasmic domain of the sarcoplasmic reticulum Ca2+-ATPase. Biochemistry 36:7706–7716

    Article  PubMed  CAS  Google Scholar 

  29. Barnes KA, Samson SE, Grover AK (2000) Sarco/endoplasmic reticulum Ca2+-pump isoform SERCA3a is more resistant to superoxide damage than SERCA2b. Mol Cell Biochem 203:17–21

    Article  PubMed  CAS  Google Scholar 

  30. Zaidi A, Michaelis M (1999) Effects of reactive oxygen species on brain synaptic plasma membrane Ca2+-ATPase. Free Radical Bio Med 27:810–821

    Article  CAS  Google Scholar 

  31. Pariente JA, Camello C, Camello PJ et al. (2001) Release of calcium from mitochondrial and nonmitochondrial intracellular stores in mouse pancreatic acinar cells by hydrogen peroxide. J Membr Biol 179:27–35

    Article  PubMed  CAS  Google Scholar 

  32. Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Ph 275:1–24

    Google Scholar 

  33. Innocenti B, Parpura V, Haydon PG (2000) Imaging extracellular waves of glutamate during calcium signalling in cultured astrocytes. J Neurosci 20:1800–1808

    PubMed  CAS  Google Scholar 

  34. Parpura V, Haydon PG (2000) Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. P Natl Acad Sci USA 97:8629–8634

    Article  CAS  Google Scholar 

  35. Cavelier P, Attwell D (2005) Tonic release of glutamate by a DIDS-sensitive mechanism in rat hippocampal slices. J Physiol London 564:397–410

    Article  PubMed  CAS  Google Scholar 

  36. Ouyang YB, Carriedo SG, Giffard RG (2002) Effect of Bcl-XL overexpression on reactive oxygen species, intracellular calcium, and mitochondrial membrane potential following injury of astrocytes. Free Radical Bio Med 33:544–551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Junta de Extremadura-Consejería de Educación, Ciencia y Tecnología (2PR04A009). María P. Granados is supported by a grant from Consejería de Educación, Ciencia y Tecnología-Junta de Extremadura y Fondo Social Europeo (FIC02A022). The authors would like to thank Dr. Rafael Fernández Chacón and Mr. Pablo García-Junco Clemente from the Faculty of Medicine of the University of Sevilla for their valuable criticisms and help in preparing the cell cultures, and Mrs. Mercedes Gómez Blázquez, from the Department of Physiology of the University of Extremadura, for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio González.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, A., Granados, M.P., Pariente, J.A. et al. H2O2 Mobilizes Ca2+ from Agonist- and Thapsigargin-sensitive and Insensitive Intracellular Stores and Stimulates Glutamate Secretion in Rat Hippocampal Astrocytes. Neurochem Res 31, 741–750 (2006). https://doi.org/10.1007/s11064-006-9078-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9078-y

Keywords

Navigation