Skip to main content

Advertisement

Log in

Catalase Activity and Thiobarbituric Acid Reactive Substances (TBARS) Production in a Rat Model of Diffuse Axonal Injury. Effect of Gadolinium and Amiloride

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

This study evaluated the effect of mechanogated membrane ion channel blockers on brain catalase (CAT) activity and thiobarbituric acid reactive substances (TBARS) production after traumatic brain injury (TBI). A weight drop trauma model was used. Controls were sham-operated and received no weight drop. Gadolinium (GAD) or amiloride (AMI) were administered to control and experimental rats (30 min after TBI). Brain CAT activity and TBARS production were measured. When blood vessels were washed out with saline perfusion brain CAT activity significantly increased up to 6 h after trauma, decreasing significantly by 24 h; GAD or AMI administration preserved CAT activity 24 h after TBI. TBARS production increased after trauma, this effect being significantly reversed by GAD or AMI administration. GAD significantly decreased TBARS production in control animals. Mechanogated membrane ion channels may be involved in the genesis of the ionic disruption leading to oxidative stress and other secondary injury processes in head trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Kraus D. L. MacArthur T. A. Silverman et al. (1996) Epidemiology of brain injury J. E. Wilkerger SuffixJr. R. K. Narayan J. T. Povlishock (Eds) Neurotrauma McGraw-Hill New York 13–30

    Google Scholar 

  2. A. B. Valadka R. K. Narayan (1996) Injury to the cranium E. E. Moure D. V. Feliciano K. L. Mattox (Eds) Trauma Appleton & Lange Norwalk 267–278

    Google Scholar 

  3. B. Jennett (1996) ArticleTitleEpidemiology of head injury J. Neurol. Neurosurg. Psychiatr. 60 IssueID4 362–369 Occurrence Handle8774396

    PubMed  Google Scholar 

  4. M. R. Klauber et al. (1981) ArticleTitleThe epidemiology of head injury: a prospective study of an entire community-San Diego County, California, 1978 Am. J. Epidemiol. 113 IssueID5 500–509 Occurrence Handle7223731

    PubMed  Google Scholar 

  5. M. M. Reinert R. Bullock (1999) ArticleTitleClinical trials in head injury Neurol. Res. 21 IssueID4 330–338 Occurrence Handle10406003

    PubMed  Google Scholar 

  6. A. Regner et al. (2001) ArticleTitleNeurochemical characterization of traumatic brain injury in humans J. Neurotrauma 18 IssueID8 783–792 Occurrence Handle10.1089/089771501316919148 Occurrence Handle11526984

    Article  PubMed  Google Scholar 

  7. R. Vagnozzi et al. (1999) ArticleTitleChanges of cerebral energy metabolism and lipid peroxidation in rats leading to mitochondrial dysfunction after diffuse brain injury J. Neurotrauma 16 IssueID10 903–913 Occurrence Handle10547099

    PubMed  Google Scholar 

  8. A. I. Faden et al. (1989) ArticleTitleThe role of excitatory amino acids and NMDA receptors in traumatic brain injury Science 244 IssueID4906 798–800 Occurrence Handle2567056

    PubMed  Google Scholar 

  9. P. Nilsson et al. (1990) ArticleTitleChanges in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats J. Cereb. Blood Flow Metab. 10 IssueID5 631–637 Occurrence Handle2384536

    PubMed  Google Scholar 

  10. T. P. Obrenovitch J. Urenjak (1997) ArticleTitleIs high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J. Neurotrauma 14 IssueID10 677–698 Occurrence Handle9383088

    PubMed  Google Scholar 

  11. A. M. Palmer et al. (1993) ArticleTitleTraumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model J. Neurochem. 61 IssueID6 2015–2024 Occurrence Handle7504079

    PubMed  Google Scholar 

  12. B. K. Siesjo P. Siesjo (1996) ArticleTitleMechanisms of secondary brain injury Eur. J. Anaesthesiol. 13 IssueID3 247–268 Occurrence Handle10.1046/j.1365-2346.1996.00976.x Occurrence Handle8737117

    Article  PubMed  Google Scholar 

  13. A. Lewen P. Matz P. H. Chan (2000) ArticleTitleFree radical pathways in CNS injury J. Neurotrauma 17 IssueID10 871–890 Occurrence Handle11063054

    PubMed  Google Scholar 

  14. W. L. Maxwell J. T. Povlishock D. L. Graham (1997) ArticleTitleA mechanistic analysis of nondisruptive axonal injury: a review J. Neurotrauma 14 IssueID7 419–440 Occurrence Handle9257661

    PubMed  Google Scholar 

  15. C. Niess et al. (2002) ArticleTitleIncidence of axonal injury in human brain tissue Acta Neuropathol. (Berl). 104 IssueID1 79–84 Occurrence Handle10.1007/s00401-002-0525-9

    Article  Google Scholar 

  16. M. A. Foda A. Marmarou (1994) ArticleTitleA new model of diffuse brain injury in rats. Part II: Morphological characterization J. Neurosurg. 80 IssueID2 301–313 Occurrence Handle8283270

    PubMed  Google Scholar 

  17. A. Marmarou et al. (1994) ArticleTitleA new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics J. Neurosurg. 80 IssueID2 291–300 Occurrence Handle8283269

    PubMed  Google Scholar 

  18. H. Gotoh A. Takahashi (1999) ArticleTitleMechanical stimuli induce intracellular calcium response in a subpopulation of cultured rat sensory neurons Neuroscience 92 IssueID4 1323–1329 Occurrence Handle10.1016/S0306-4522(99)00032-9 Occurrence Handle10426487

    Article  PubMed  Google Scholar 

  19. J. A. Wolf et al. (2001) ArticleTitleTraumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels J. Neurosci. 21 IssueID6 1923–1930 Occurrence Handle11245677

    PubMed  Google Scholar 

  20. B. Martinac (2004) ArticleTitleMechanosensitive ion channels: molecules of mechanotransduction J. Cell Sci. 117 IssueIDPt 12 2449–2460 Occurrence Handle10.1242/jcs.01232 Occurrence Handle15159450

    Article  PubMed  Google Scholar 

  21. O. P. Hamill D. W. McBride SuffixJr. (1996) ArticleTitleThe pharmacology of mechanogated membrane ion channels Pharmacol. Rev. 48 IssueID2 231–252 Occurrence Handle8804105

    PubMed  Google Scholar 

  22. S. W. Hoffman et al. (2000) ArticleTitleAstrocytes generate isoprostanes in response to trauma or oxygen radicals J. Neurotrauma. 17 IssueID5 415–420 Occurrence Handle10833060

    PubMed  Google Scholar 

  23. L. Horakova et al. (2000) ArticleTitlePreventive effect of several antioxidants after oxidative stress on rat brain homogenates Gen. Physiol. Biophys. 19 IssueID2 195–205 Occurrence Handle11156442

    PubMed  Google Scholar 

  24. R. Dringen P. G. Pawlowski J. Hirrlinger (2005) ArticleTitlePeroxide detoxification by brain cells J. Neurosci. Res. 79 IssueID1–2 157–165 Occurrence Handle10.1002/jnr.20280 Occurrence Handle15573410

    Article  PubMed  Google Scholar 

  25. S. Islekel et al. (1999) ArticleTitleAlterations in superoxide dismutase, glutathione peroxidase and catalase activities in experimental cerebral ischemia-reperfusion Res. Exp. Med. (Berl). 199 IssueID3 167–176 Occurrence Handle10.1007/s004330050121

    Article  Google Scholar 

  26. H. Aebi (1984) ArticleTitleCatalase in vitro Methods Enzymol. 105 121–126 Occurrence Handle6727660

    PubMed  Google Scholar 

  27. M. M. Bradford (1976) ArticleTitleA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem. 72 248–254 Occurrence Handle942051

    PubMed  Google Scholar 

  28. J. A. Buege S. D. Aust (1978) ArticleTitleMicrosomal lipid peroxidation Methods Enzymol. 52 302–310 Occurrence Handle672633

    PubMed  Google Scholar 

  29. R. Floyd J. Carney (1991) ArticleTitleAge influence on oxidative events during brain ischemia reperfusion Arch. Gerontol. Geriatr. 12 IssueID2–3 155–177 Occurrence Handle10.1016/0167-4943(91)90025-L Occurrence Handle15374445

    Article  PubMed  Google Scholar 

  30. M. Inoue et al. (2003) ArticleTitleMitochondrial generation of reactive oxygen species and its role in aerobic life Curr. Med. Chem. 10 IssueID23 2495–2505 Occurrence Handle10.2174/0929867033456477 Occurrence Handle14529465

    Article  PubMed  Google Scholar 

  31. E. P. Wei et al. (1981) ArticleTitleInhibition by free radical scavengers and by cyclooxygenase inhibitors of pial arteriolar abnormalities from concussive brain injury in cats Circ. Res. 48 IssueID1 95–103 Occurrence Handle6777069

    PubMed  Google Scholar 

  32. J. K. Muir et al. (1995) ArticleTitleSuperoxide dismutase improves posttraumatic cortical blood flow in rats J. Neurotrauma 12 IssueID2 179–188 Occurrence Handle7629864

    PubMed  Google Scholar 

  33. J. Hirrlinger et al. (2002) ArticleTitleOligodendroglial cells in culture effectively dispose of exogenous hydrogen peroxide: comparison with cultured neurones, astroglial and microglial cells J. Neurochem. 82 IssueID3 635–644 Occurrence Handle10.1046/j.1471-4159.2002.00999.x Occurrence Handle12153487

    Article  PubMed  Google Scholar 

  34. F. Fouquet et al. (1997) ArticleTitleExpression of the adrenoleukodystrophy protein in the human and mouse central nervous system Neurobiol. Dis. 3 IssueID4 271–285 Occurrence Handle10.1006/nbdi.1997.0127 Occurrence Handle9173925

    Article  PubMed  Google Scholar 

  35. A. Schad et al. (2003) ArticleTitleExpression of catalase mRNA and protein in adult rat brain: detection by nonradioactive in situ hybridization with signal amplification by catalyzed reporter deposition (ISH-CARD) and immunohistochemistry (IHC)/immunofluorescence (IF) J. Histochem. Cytochem. 51 IssueID6 751–760 Occurrence Handle12754286

    PubMed  Google Scholar 

  36. Y. S. Ho et al. (1997) ArticleTitleMice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia J. Biol. Chem. 272 IssueID26 16644–16651 Occurrence Handle10.1074/jbc.272.26.16644 Occurrence Handle9195979

    Article  PubMed  Google Scholar 

  37. K. V. Biagas et al. (1996) ArticleTitlePosttraumatic hyperemia in immature, mature, and aged rats: autoradiographic determination of cerebral blood flow J. Neurotrauma 13 IssueID4 189–200 Occurrence Handle8860199

    PubMed  Google Scholar 

  38. T. Petrov J. A. Rafols (2001) ArticleTitleAcute alterations of endothelin-1 and iNOS expression and control of the brain microcirculation after head trauma Neurol. Res. 23 IssueID2–3 139–143 Occurrence Handle10.1179/016164101101198479 Occurrence Handle11320592

    Article  PubMed  Google Scholar 

  39. T. Sokolova et al. (2001) ArticleTitleCatalase in astroglia-rich primary cultures from rat brain: immunocytochemical localization and inactivation during the disposal of hydrogen peroxide Neurosci. Lett. 297 IssueID2 129–132 Occurrence Handle10.1016/S0304-3940(00)01689-X Occurrence Handle11121887

    Article  PubMed  Google Scholar 

  40. N. Borges et al. (2004) ArticleTitleChanges in rat cerebral mitochondrial succinate dehydrogenase activity after brain trauma Int. J. Neurosci. 114 IssueID2 217–227 Occurrence Handle10.1080/00207450490249419 Occurrence Handle14702209

    Article  PubMed  Google Scholar 

  41. R. Vaz et al. (1998) ArticleTitleEffect of mechanogated membrane ion channel blockers on experimental traumatic brain oedema Acta Neurochir. (Wien) 140 IssueID4 371–375 Occurrence Handle10.1007/s007010050111

    Article  Google Scholar 

  42. D. G. Nicholls S. L. Budd (1998) ArticleTitleNeuronal excitotoxicity: the role of mitochondria Biofactors 8 IssueID3–4 287–299 Occurrence Handle9914831

    PubMed  Google Scholar 

  43. Z. Zhong et al. (1995) ArticleTitleRole of Kupffer cells in reperfusion injury in fat-loaded livers from ethanol-treated rats J. Pharmacol. Exp. Ther. 275 IssueID3 1512–1517 Occurrence Handle8531123

    PubMed  Google Scholar 

  44. P. Muriel et al. (2001) ArticleTitleKupffer cells inhibition prevents hepatic lipid peroxidation and damage induced by carbon tetrachloride Comp. Biochem. Physiol. C Toxicol. Pharmacol. 130 IssueID2 219–226 Occurrence Handle10.1016/S1532-0456(01)00237-X Occurrence Handle11574291

    Article  PubMed  Google Scholar 

  45. M. E. Smith (1993) ArticleTitlePhagocytosis of myelin by microglia in vitro J. Neurosci. Res. 35 IssueID5 480–487 Occurrence Handle10.1002/jnr.490350504 Occurrence Handle7690856

    Article  PubMed  Google Scholar 

  46. B. Halliwell (2000) Free radicals,, other reactive species and disease B. Halliwell J. Gutteridge (Eds) Free Radicals in Biology and Medicine Oxford Scientific Publications Oxford 105–245

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A., Borges, N., Cerejo, A. et al. Catalase Activity and Thiobarbituric Acid Reactive Substances (TBARS) Production in a Rat Model of Diffuse Axonal Injury. Effect of Gadolinium and Amiloride. Neurochem Res 30, 625–631 (2005). https://doi.org/10.1007/s11064-005-2750-9

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-2750-9

Keywords

Navigation