Skip to main content
Log in

PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper proposes a modified optimization algorithm called polar coordinate salp swarm algorithm (PSSA). The main inspiration of PSSA is the aggregation chain and foraging trajectory of salp is spiral. Some curves are extremely complex when represented in Cartesian coordinate system, but if they are expressed in polar coordinates, it becomes very simple and easy to handle, and polar coordinates are widely used in scientific computing and engineering issues. It will be more intuitive and convenient if use polar coordinates to define the foraging and aggregation process of salps. At the same time, different from other algorithms proposed in the past, the PSSA directly initialize individuals in polar space instead of using mapping functions to convert to polar coordinates, change the position of particles by updating polar angles and polar diameters. This algorithm is tested on two complex polar coordinate equations, several curve approximation problems and engineering design problems using PSSA. The experimental results illustrated that the proposed PSSA algorithm is superior to the state-of-the-art metaheuristic algorithms in terms of the performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bryant P (1993) The polar coordinate model goes molecular. Science 259(5094):471–472

    Google Scholar 

  2. Mohseni K, Colonius T (2000) Numerical Treatment of Polar Coordinate Singularities. J Comput Phys 157(2):787–795

    MathSciNet  MATH  Google Scholar 

  3. Ahmad T, Hu J, Wang S (2011) Pair-polar coordinate-based cancelable fingerprint templates. Pattern Recogn 44(10):2555–2564

    Google Scholar 

  4. Hanbury A (2003) A 3D-polar coordinate colour representation well adapted to image analysis. In: Image analysis, 13th Scandinavian conference, SCIA 2003, Halmstad, Sweden, 29 June–2 July 2003, proceedings DBLP

  5. Lei X et al (2011) Roundness error evaluation algorithm based on polar coordinate transform. Measurement 44(2):345–350

    Google Scholar 

  6. Aminataei A, Mazarei MM (2008) Numerical solution of Poisson’s equation using radial basis function networks on the polar coordinate. Comput Math Appl 56(11):2887–2895

    MathSciNet  MATH  Google Scholar 

  7. Azzam RMA (1975) Polar curves for transmission ellipsometry. Opt Commun 14(1):145–147

    Google Scholar 

  8. Moore KC, Paoletti T, Musgrave S (2014) Complexities in students’ construction of the polar coordinate system. J Math Behav 36:135–149

    Google Scholar 

  9. Kennedy J (2006) Swarm intelligence. Handbook of nature-inspired and innovative computing. Springer, Berlin, pp 187–219

    Google Scholar 

  10. Aljarah I, Faris H, Mirjalili S, Al-Madi N (2018) Training radial basis function networks using biogeography-based optimizer. Neural Comput Appl 29(7):529–553

    Google Scholar 

  11. Eberhart R, Kennedy J (2002) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE

  12. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1:28–39

    Google Scholar 

  13. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27:1053–1073

    Google Scholar 

  14. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Google Scholar 

  15. Aljarah I, Faris H, Mirjalili S (2018) Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput 22(1):1–15

    Google Scholar 

  16. Heidari AA, Abbaspour RA, Jordehi AR (2017) An efficient chaotic water cycle algorithm for optimization tasks. Neural Comput Appl 28:57–85

    Google Scholar 

  17. Heidari AA, Abbaspour RA, Jordehi AR (2017) Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl Soft Comput 57:657–671

    Google Scholar 

  18. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17:4831–4845

    MathSciNet  MATH  Google Scholar 

  19. Pan WT (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74

    Google Scholar 

  20. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  21. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin

  22. Sörensen K, Sevaux M, Glover F (2015) A history of metaheuristics. https://hal.univ-brest.fr/hal-01113432v1

  23. Matthysen W, Engelbrecht AP (2010) A polar coordinate particle swarm optimiser. Appl Soft Comput 11(1):1322–1399

    Google Scholar 

  24. Sierra A, Echeverra A (2006) The polar evolution strategy. In: Proceedings of the IEEE congress on evolutionary computation, pp 2301–2306

  25. Shatnawi M, Nasrudin MF (2017) Particle initialization of the polar particle swarm optimizer algorithm in polar coordinate. J Soft Comput 12:228–235

    Google Scholar 

  26. Wei S, Sun Y-H, Jia X (2010) Improved artificial fish swarm algorithm based on polar coordinate coding. Syst Eng Electron 32:2248–2251

    MATH  Google Scholar 

  27. Wu Y, Zhou Y (2017) A drosophila optimization algorithm based on polar coding. Math Pract Cognit 47:161–170

    MATH  Google Scholar 

  28. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Google Scholar 

  29. Madin L (1990) Aspects of jet propulsion in salps. Can J Zool 68:765–777

    Google Scholar 

  30. Anderson PA, Bone Q (1980) Communication between individuals in salp chains II. Physiology. Proc R Soc Lond B 210:559–574

    Google Scholar 

  31. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359

    MathSciNet  MATH  Google Scholar 

  32. Kennedy J, Eberart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4, pp 1942–1948

  33. Faris H, Mafarja MM, Heidari AA, Aljarah I, Al-Zoubi AM, Mirjalili S, Fujita H (2018) An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowl Based Syst 154:43–67

    Google Scholar 

  34. Ibrahim RA, Ewees AA, Oliva D, Elaziz MA (2019) Improved salp swarm algorithm based on particle swarm optimization for feature selection. J Ambient Intell Hum Comput 10:3155–3169

    Google Scholar 

  35. Rizk-Allah RM, Hassanien AE, Elhoseny M, Gunasekaran M (2019) A new binary salp swarm algorithm: development and application for optimization tasks. Neural Comput Appl 31(5):1641–1663

    Google Scholar 

  36. Qais MH, Hasanien HM, Alghuwainem S (2019) Enhanced salp swarm algorithm: application to variable speed wind generators. Eng Appl Artif Intell 80:82–96

    Google Scholar 

  37. Sayed GI, Khoriba G, Haggag MH (2018) A novel chaotic salp swarm algorithm for global optimization and feature selection. Appl Intell 48:3462–3481

    Google Scholar 

  38. Singh N, Son LH, Chiclana F, Magnot J-P (2020) A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Eng Comput 36:185–212

    Google Scholar 

  39. Majhi SK, Mishra A, Pradhan R (2019) A chaotic salp swarm algorithm based on quadratic integrate and fire neural model for function optimization. Prog Artif Intell 8:343–358

    Google Scholar 

  40. Ibrahim A, Ahmed A, Hussein S, Hassanien AE (2018) Fish image segmentation using salp swarm algorithm. In: Hassanien A, Tolba M, Elhoseny M, Mostafa M (eds) The international conference on advanced machine learning technologies and applications (AMLTA 2018). AMLTA 2018. Advances in intelligent systems and computing, vol 723. Springer, Cham

  41. Alresheedi SS, Lu S, Abd Elaziz M et al (2019) Improved multiobjective salp swarm optimization for virtual machine placement in cloud computing. Hum Cent Comput Inf Sci 9:15. https://doi.org/10.1186/s13673-019-0174-9

    Article  Google Scholar 

  42. Faris H, Mirjalili S, Aljarah I, Mafarja M, Heidari AA (2020) Salp swarm algorithm: theory, literature review, and application in extreme learning machines. In: Mirjalili S, SongDong J, Lewis A (eds) Nature-inspired optimizers. Studies in computational intelligence, vol 811. Springer, Cham

    Google Scholar 

  43. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82

    Google Scholar 

  44. Faramarzi A (2019) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst

  45. Singh H (2017) A new stable algorithm for fractional Navier–Stokes equation in polar coordinate. Int J Appl Comput Math 3:3705–3722

    MathSciNet  MATH  Google Scholar 

  46. Junjie R, Lihua W, Jin X (2014) Efficiency improvement of the polar coordinate transformation for evaluating BEM singular integrals on curved elements. Eng Anal Bound Elem 38:83–93

    MathSciNet  MATH  Google Scholar 

  47. Li X (2003) A new intelligent optimization method-artificial fish swarm algorithm. Zhejiang University, Hangzhou

    Google Scholar 

  48. Li X, Shao Z, Qian J (2002) An optimization model based on animal local government: fish swarm algorithm. Syst Eng Theory Pract 11:32–38

    Google Scholar 

  49. Cai Z (2000) Robotics. Tsinghua University Press, Beijing

    Google Scholar 

  50. Zhang X, Gao X (2008) Improvement research on cubic spline interpolation in robot trajectory planning application. Mech Des Manuf 9:170–171

    Google Scholar 

  51. Denavit J, Hartenberg RS (1955) A kinematic notation for lower pair mechanisms based on matrices. J Appl Mech 13:215–221

    MathSciNet  MATH  Google Scholar 

  52. Ding X (2006) Robot control research. Zhejiang University Press, Hangzhou, pp 37–38

    Google Scholar 

  53. Xiong Y, Ding H, Liu E (1993) Robotics. Mechanical Industry Press, Beijing

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Science Foundation of China under Grant No. 61563008, and by Project of Guangxi Natural Science Foundation under Grant No. 2018GXNSFAA138146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Z., Zhou, Y., Luo, Q. et al. PSSA: Polar Coordinate Salp Swarm Algorithm for Curve Design Problems. Neural Process Lett 52, 615–645 (2020). https://doi.org/10.1007/s11063-020-10271-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-020-10271-2

Keywords

Navigation