Skip to main content

Advertisement

Log in

Role of the Plasma Membrane Ca2+-ATPase Pump in the Regulation of Rhythm Generation by an Interstitial Cell of Cajal: A Computational Study

  • Published:
Neurophysiology Aims and scope

Gastrointestinal motility is based on the rhythmic activity of interstitial cells of Cajal (ICCs). The ICC rhythm generation relies upon characteristic Ca2+-handling mechanisms that involve voltage-gated Ca2+ channels, pumps and exchangers located in the plasma membrane, endoplasmic reticulum (ER), and mitochondria. Mutations, overexpression, and genetic knockdowns of the plasma membrane calcium ATPase (PMCA) pumps have been shown to disrupt calcium signaling and to cause disorders in other cell systems. Using an ICC biophysical model, we investigated the effects of PMCA pump upregulation in ICC rhythm generation. We found that, depending on the PMCA maximum pumping rate, the ICC model generates voltage and Ca2+ oscillations with different characteristics or becomes silent. The model predicts the coexistence of activity regimes near a canonical set of the parameters. One of these regimes is a silent regime that would indicate gastric dysmotility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Huizinga and W. J. Lammers, “Gut peristalsis is governed by a multitude of cooperating mechanisms,” Am. J. Physiol. Gastrointest. Liver Physiol., 296, No. 1, G1–8 (2009).

    Article  CAS  Google Scholar 

  2. D. F. van Helden, D. R. Laver, J. Holdsworth, and M. S. Imtiaz, “Generation and propagation of gastric slow waves,” Clin. Exp. Pharmacol. Physiol., 37, No. 4, 516–524 (2010).

    Article  Google Scholar 

  3. K. M. Sanders, S. M. Ward, and S. D. Koh, “Interstitial cells: regulators of smooth muscle function,” Physiol. Rev., 94, No. 3, 859–907 (2014).

    Article  CAS  Google Scholar 

  4. S. M. Ward, T. Ordog, S. D. Koh, et al., “Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria,” J. Physiol., 525, Pt. 2, 355–361 (2000).

    Article  CAS  Google Scholar 

  5. P. J. Blair, P. L. Rhee, K. M. Sanders, and S. M. Ward, “The significance of interstitial cells in neurogastroenterology,” J. Neurogastroenterol. Motil., 20, No. 3, 294–317 (2014).

    Article  Google Scholar 

  6. A. Corrias and M. L. Buist, “Quantitative cellular description of gastric slow wave activity,” Am. J. Physiol. Gastrointest. Liver Physiol., 294, No. 4, G989–995 (2008).

    Article  CAS  Google Scholar 

  7. E. E. Strehler and M. Treiman, “Calcium pumps of plasma membrane and cell interior,” Curr. Mol. Med., 4, No. 3, 323–335 (2004).

    Article  CAS  Google Scholar 

  8. J. I. E. Bruce, “Metabolic regulation of the PMCA: Role in cell death and survival,” Cell Calcium, 69, 28–36 (2018).

    Article  CAS  Google Scholar 

  9. E. E. Strehler, “Plasma membrane calcium ATPases as novel candidates for therapeutic agent development,” J. Pharm. Pharm. Sci., 16, No. 2, 190–206 (2013).

    Article  CAS  Google Scholar 

  10. J. B. Youm, N. Kim, J. Han, et al., “A mathematical model of pacemaker activity recorded from mouse small intestine,” Philos. Trans. A Math Phys. Eng. Sci., 364, No. 1842, 1135–1154 (2006).

    Article  CAS  Google Scholar 

  11. R. A. Faville, A. J. Pullan, K. M. Sanders, and N. P. Smith, “A biophysically based mathematical model of unitary potential activity in interstitial cells of Cajal,” Biophys. J., 95, No. 1, 88–104 (2008).

    Article  CAS  Google Scholar 

  12. R. Lees-Green, S. J. Gibbons, G. Farrugia, et al.,“Computational modeling of anoctamin 1 calciumactivated chloride channels as pacemaker channels in interstitial cells of Cajal,” Am. J. Physiol. Gastrointest. Liver Physiol., 306, No. 8, G711–727 (2014).

    Article  CAS  Google Scholar 

  13. R. Lees-Green, P. Du, G. O’Grady, et al., “Biophysically based modeling of the interstitial cells of Cajal: current status and future perspectives,” Front. Physiol., 2, No. 29 (2011).

  14. G. Magnus and J. Keizer, “Minimal model of beta-cell mitochondrial Ca2+ handling,” Am. J. Physiol., 273, No. 2, Pt. 1, C717–733 (1997).

    Article  CAS  Google Scholar 

  15. C. P. Fall and J. E. Keizer, “Mitochondrial modulation of intracellular Ca(2+) signaling,” J. Theor. Biol., 210, No. 2, 151–165 (2001).

    Article  CAS  Google Scholar 

  16. S. Torihashi, T. Fujimoto, C. Trost, and S. Nakayama, “Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae,” J. Biol. Chem., 277, No. 21, 19191–19197 (2002).

    Article  CAS  Google Scholar 

  17. G. D. Hirst and F. R. Edwards, “Generation of slow waves in the antral region of guinea-pig stomach – a stochastic process,” J. Physiol., 535, Pt 1, 165–180 (2001).

    Article  CAS  Google Scholar 

  18. M. Brini, T. Cali, D. Ottolini, and E. Carafoli, “The plasma membrane calcium pump in health and disease,” FEBS J., 280, No. 21, 5385–5397 (2013).

    Article  CAS  Google Scholar 

  19. R. Gros, T. Afroze, X. M. You, et al., “Plasma membrane calcium ATPase overexpression in arterial smooth muscle increases vasomotor responsiveness and blood pressure,” Circ. Res., 93, No. 7, 614–621 (2003).

    Article  CAS  Google Scholar 

  20. W. J. Cho and E. E. Daniel, “Proteins of interstitial cells of Cajal and intestinal smooth muscle, colocalized with caveolin-1,” Am. J. Physiol. Gastrointest. Liver Physiol., 288, No. 3, G571–585 (2005).

    Article  CAS  Google Scholar 

  21. N. E. Diamant and A. Bortoff, “Nature of the intestinal slow-wave frequency gradient”. Am J. Physiol., 216, No. 2, 301–307 (1969).

    Article  CAS  Google Scholar 

  22. S. M. Korogod, G. S. Cymbalyuk, I. A. Makedonsky, and I. B. Kulagina, “Hypoxic depression of pacemaker activity of interstitial cells of Cajal: A threat of gastrointestinal dysmotility and necrosis. A simulation study,” Neurophysiology, 50, No. 2, 76–82 (2018).

    Article  CAS  Google Scholar 

  23. V. H. Oliveira, K. S. Nascimento, M. M. Freire, et al., “Mechanism of modulation of the plasma membrane Ca(2+)-ATPase by arachidonic acid,” Prostaglandins Other Lipid Mediat., 87, Nos. 1–4, 47–53 (2008).

    Article  CAS  Google Scholar 

  24. M. F. Pignataro, M. M. Dodes-Traian, F. L. Gonzalez-Flecha, et al., “Modulation of plasma membrane Ca2+- ATPase by neutral phospholipids: effect of the micellevesicle transition and the bilayer thickness,” J. Biol. Chem., 290, No. 10, 6179–6190 (2015).

    Article  CAS  Google Scholar 

  25. T. Sammour, A. Mittal, B. P. Loveday, et al., “Systematic review of oxidative stress associated with pneumoperitoneum,” Br. J. Surg., 96, No. 8, 836–850 (2009).

    Article  CAS  Google Scholar 

  26. S. Hatipoglu, S. Akbulut, F. Hatipoglu, and R. Abdullayev, “Effect of laparoscopic abdominal surgery on splanchnic circulation: historical developments,” World J. Gastroenterol., 20, No. 48, 18165–18176 (2014).

    Article  Google Scholar 

  27. Y. Guan, R. T. Worrell, T. A. Pritts, and M. H. Montrose, “Intestinal ischemia-reperfusion injury: reversible and irreversible damage imaged in vivo,” Am. J. Physiol. Gastrointest. Liver Physiol., 297, No. 1, G187–196 (2009).

    Article  CAS  Google Scholar 

  28. N. Shimojima, T. Nakaki, Y. Morikawa, et al., “Interstitial cells of Cajal in dysmotility in intestinal ischemia and reperfusion injury in rats,” J. Surg. Res., 135, No. 2, 255–261 (2006).

    Article  CAS  Google Scholar 

  29. K. Bielefeldt and J. L. Conklin, “Intestinal motility during hypoxia and reoxygenation in vitro,” Dig. Dis. Sci., 42, No. 5, 878–884 (1997).

    Article  CAS  Google Scholar 

  30. S. Yilmaz, C. Polat, A. Kahraman, et al., “The comparison of the oxidative stress effects of different gases and intra-abdominal pressures in an experimental rat model,” J Laparoendosc. Adv. Surg. Tech. A, 14, No. 3, 165–168 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Cymbalyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellingson, P.J., Korogod, S.M., Kahl, T.M. et al. Role of the Plasma Membrane Ca2+-ATPase Pump in the Regulation of Rhythm Generation by an Interstitial Cell of Cajal: A Computational Study. Neurophysiology 51, 312–321 (2019). https://doi.org/10.1007/s11062-020-09825-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09825-w

Keywords

Navigation