Skip to main content

Ca2+ Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract

  • Conference paper
  • First Online:
The Enteric Nervous System II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1383))

Abstract

Years ago gastrointestinal motility was thought to be due to interactions between enteric nerves and smooth muscle cells (SMCs) in the tunica muscularis. Thus, regulatory mechanisms controlling motility were either myogenic or neurogenic. Now we know that populations of interstitial cells, c-Kit+ (interstitial cells of Cajal or ICC), and PDGFRα+ cells (formerly “fibroblast-like” cells) are electrically coupled to SMCs, forming the SIP syncytium. Pacemaker and neurotransduction functions are provided by interstitial cells through Ca2+ release from the endoplasmic reticulum (ER) and activation of Ca2+-activated ion channels in the plasma membrane (PM). ICC express Ca2+-activated Cl channels encoded by Ano1. When activated, Ano1 channels produce inward current and, therefore, depolarizing or excitatory effects in the SIP syncytium. PDGFRα+ cells express Ca2+-activated K+ channels encoded by Kcnn3. These channels generate outward current when activated and hyperpolarizing or membrane-stabilizing effects in the SIP syncytium. Inputs from enteric and sympathetic neurons regulate Ca2+ transients in ICC and PDGFRα+ cells, and currents activated in these cells conduct to SMCs and regulate contractile behaviors. ICC also serve as pacemakers, generating slow waves that are the electrophysiological basis for gastric peristalsis and intestinal segmentation. Pacemaker types of ICC express voltage-dependent Ca2+ conductances that organize Ca2+ transients, and therefore Ano1 channel openings, into clusters that define the amplitude and duration of slow waves. Ca2+ handling mechanisms are at the heart of interstitial cell function, yet little is known about what happens to Ca2+ dynamics in these cells in GI motility disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida TA, Rojo J, Nieto PM, Pinto FM, Hernandez M, Martín JD, Candenas ML (2004) Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem 11:2045–2081

    Article  CAS  Google Scholar 

  2. Baker SA, Drumm BT, Cobine CA, Keef KD, Sanders KM (2018a) Inhibitory neural regulation of the Ca(2+) transients in intramuscular interstitial cells of Cajal in the small intestine. Front Physiol 9:328

    Article  Google Scholar 

  3. Baker SA, Drumm BT, Saur D, Hennig GW, Ward SM, Sanders KM (2016) Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. J Physiol 594:3317–3338

    Article  CAS  Google Scholar 

  4. Baker SA, Drumm BT, Skowronek KE, Rembetski BE, Peri LE, Hennig GW, Perrino BA, Sanders KM (2018b) Excitatory neuronal responses of Ca(2+) transients in interstitial cells of Cajal in the small intestine. eNeuro 5(2):ENEURO.0080-18.2018. https://doi.org/10.1523/ENEURO.0080-18.2018

    Article  Google Scholar 

  5. Baker SA, Hennig GW, Salter AK, Kurahashi M, Ward SM, Sanders KM (2013) Distribution and Ca(2+) signalling of fibroblast-like (PDGFR(+)) cells in the murine gastric fundus. J Physiol 591:6193–6208

    Article  CAS  Google Scholar 

  6. Baker SA, Hennig GW, Ward SM, Sanders KM (2015) Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon. J Physiol 593:1945–1963

    Article  CAS  Google Scholar 

  7. Baker SA, Leigh WA, Del Valle G, De Yturriaga IF, Ward SM, Cobine CA, Drumm BT, Sanders KM (2021) Ca2+ signaling driving pacemaker activity in submucosal interstitial cells of Cajal in the murine colon. elife 10:e64099

    Article  CAS  Google Scholar 

  8. Bayguinov O, Ward SM, Kenyon JL, Sanders KM (2007) Voltage-gated Ca2+ currents are necessary for slow-wave propagation in the canine gastric antrum. Am J Physiol Cell Physiol 293:C1645–C1659

    Article  CAS  Google Scholar 

  9. Beck K, Friebe A, Voussen B (2018) Nitrergic signaling via interstitial cells of Cajal and smooth muscle cells influences circular smooth muscle contractility in murine colon. Neurogastroenterol Motil 30(6):e13300

    Article  CAS  Google Scholar 

  10. Bhetwal BP, Sanders KM, An C, Trappanese DM, Moreland RS, Perrino BA (2013) Ca2+ sensitization pathways accessed by cholinergic neurotransmission in the murine gastric fundus. J Physiol 591:2971–2986

    Article  CAS  Google Scholar 

  11. Burnstock G, Satchell DG, Smythe A (1972) A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol 46:234–242

    Article  CAS  Google Scholar 

  12. Chen H, Ordog T, Chen J, Young DL, Bardsley MR, Redelman D, Ward SM, Sanders KM (2007) Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine. Physiol Genomics 31:492–509

    Article  CAS  Google Scholar 

  13. Cohen NM, Lederer WJ (1987) Calcium current in isolated neonatal rat ventricular myocytes. J Physiol 391:169–191

    Article  CAS  Google Scholar 

  14. Costa M, Furness JB, Pompolo S, Brookes SJ, Bornstein JC, Bredt DS, Snyder SH (1992) Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci Lett 148:121–125

    Article  CAS  Google Scholar 

  15. Daniel EE, Posey-Daniel V (1984) Neuromuscular structures in opossum esophagus: role of interstitial cells of {Cajal}. Am J Phys 246:G305–G315

    CAS  Google Scholar 

  16. Drumm BT, Hennig GW, Battersby MJ, Cunningham EK, Sung TS, Ward SM, Sanders KM, Baker SA (2017) Clustering of Ca(2+) transients in interstitial cells of Cajal defines slow wave duration. J Gen Physiol 149:703–725

    Article  CAS  Google Scholar 

  17. Drumm BT, Hwang SJ, Baker SA, Ward SM, Sanders KM (2019a) Ca2+ signalling behaviours of intramuscular interstitial cells of Cajal in the murine colon. J Physiol 597:3587–3617

    Article  CAS  Google Scholar 

  18. Drumm BT, Rembetski BE, Baker SA, Sanders KM (2019b) Tonic inhibition of murine proximal colon is due to nitrergic suppression of Ca. Sci Rep 9:4402

    Article  Google Scholar 

  19. Drumm BT, Rembetski BE, Huynh K, Nizar A, Baker SA, Sanders KM (2020a) Excitatory cholinergic responses in mouse colon intramuscular interstitial cells of Cajal are due to enhanced Ca2+ release via M3 receptor activation. FASEB J 34(8):10073–10095

    Article  CAS  Google Scholar 

  20. Drumm BT, Rembetski BE, Messersmith K, Manierka MS, Baker SA, Sanders KM (2020b) Pacemaker function and neural responsiveness of subserosal interstitial cells of Cajal in the mouse colon. J Physiol 598:651–681

    Article  CAS  Google Scholar 

  21. Durnin L, Hwang SJ, Kurahashi M, Drumm BT, Ward SM, Sasse KC, Sanders KM, Mutafova-Yambolieva VN (2014) Uridine adenosine tetraphosphate is a novel neurogenic P2Y1 receptor activator in the gut. Proc Natl Acad Sci U S A 111:15821–15826

    Article  CAS  Google Scholar 

  22. Durnin L, Hwang SJ, Ward SM, Sanders KM, Mutafova-Yambolieva VN (2012) Adenosine 5-diphosphate-ribose is a neural regulator in primate and murine large intestine along with beta-NAD(+). J Physiol 590:1921–1941

    Article  CAS  Google Scholar 

  23. Erb L, Weisman GA (2012) Coupling of P2Y receptors to G proteins and other signaling pathways. Wiley Interdiscip Rev Membr Transp Signal 1:789–803

    Article  CAS  Google Scholar 

  24. Faussone Pellegrini MS, Cortesini C, Romagnoli P (1977) Ultrastructure of the tunica muscularis of the cardial portion of the human esophagus and stomach, with special reference to the so-called Cajal’s interstitial cells. Arch Ital Anat Embriol 82:157–177

    CAS  Google Scholar 

  25. Gallego D, Gil V, Martinez-Cutillas M, Mane N, Martin MT, Jimenez M (2012) Purinergic neuromuscular transmission is absent in the colon of P2Y(1) knocked out mice. J Physiol 590:1943–1956

    Article  CAS  Google Scholar 

  26. Geiselhoringer A, Werner M, Sigl K, Smital P, Worner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J (2004) IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO J 23:4222–4231

    Article  Google Scholar 

  27. Gibbons SJ, Strege PR, Lei S, Roeder JL, Mazzone A, Ou Y, Rich A, Farrugia G (2009) The alpha1H Ca2+ channel subunit is expressed in mouse jejunal interstitial cells of Cajal and myocytes. J Cell Mol Med 13:4422–4431

    Article  CAS  Google Scholar 

  28. Groneberg D, Konig P, Lies B, Jager R, Seidler B, Klein S, Saur D, Friebe A (2013) Cell-specific deletion of nitric oxide-sensitive guanylyl cyclase reveals a dual pathway for nitrergic neuromuscular transmission in the murine fundus. Gastroenterology 145(1):188–196

    Article  CAS  Google Scholar 

  29. Groneberg D, Zizer E, Lies B, Seidler B, Saur D, Wagner M, Friebe A (2015) Dominant role of interstitial cells of Cajal in nitrergic relaxation of murine lower oesophageal sphincter. J Physiol 593:403–414

    Article  CAS  Google Scholar 

  30. Ha SE, Lee MY, Kurahashi M, Wei L, Jorgensen BG, Park C, Park PJ, Redelman D, Sasse KC, Becker LS, Sanders KM, Ro S (2017) Transcriptome analysis of PDGFRalpha+ cells identifies T-type Ca2+ channel CACNA1G as a new pathological marker for PDGFRalpha+ cell hyperplasia. PLoS One 12:e0182265

    Article  Google Scholar 

  31. Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P (2003) Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 23:4013–4025

    Article  CAS  Google Scholar 

  32. Hanani M, Farrugia G, Komuro T (2005) Intercellular coupling of interstitial cells of cajal in the digestive tract. Int Rev Cytol 242:249–282

    Article  CAS  Google Scholar 

  33. Hannigan KI, Bossey AP, Foulkes HJL, Drumm BT, Baker SA, Ward SM, Sanders KM, Keef KD, Cobine CA (2020) A novel intramuscular Interstitial Cell of Cajal is a candidate for generating pacemaker activity in the mouse internal anal sphincter. Sci Rep 10:10378

    Article  CAS  Google Scholar 

  34. Hennig GW, Smith CB, O’Shea DM, Smith TK (2002) Patterns of intracellular and intercellular Ca2+ waves in the longitudinal muscle layer of the murine large intestine in vitro. J Physiol 543:233–253

    Article  CAS  Google Scholar 

  35. Huizinga JD, Chen JH, Zhu YF, Pawelka A, Mcginn RJ, Bardakjian BL, Parsons SP, Kunze WA, Wu RY, Bercik P, Khoshdel A, Chen S, Yin S, Zhang Q, Yu Y, Gao Q, Li K, Hu X, Zarate N, Collins P, Pistilli M, Ma J, Zhang R, Chen D (2014) The origin of segmentation motor activity in the intestine. Nat Commun 5:3326

    Article  Google Scholar 

  36. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A (1995) W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373:347–349

    Article  CAS  Google Scholar 

  37. Hwang SJ, Blair PJ, Durnin L, Mutafova-Yambolieva V, Sanders KM, Ward SM (2012) P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit. J Physiol 590:1957–1972

    Article  CAS  Google Scholar 

  38. Hwang SJ, Durnin L, Dwyer L, Rhee PL, Ward SM, Koh SD, Sanders KM, Mutafova-Yambolieva VN (2011) Beta-nicotinamide adenine dinucleotide is an enteric inhibitory neurotransmitter in human and nonhuman primate colons. Gastroenterology 140(608–617):e6

    Google Scholar 

  39. Hwang SJ, Pardo DM, Zheng H, Bayguinov Y, Blair PJ, Fortune-Grant R, Cook RS, Hennig GW, Shonnard MC, Grainger N, Peri LE, Verma SD, Rock J, Sanders KM, Ward SM (2019) Differential sensitivity of gastric and small intestinal muscles to inducible knockdown of anoctamin 1 and the effects on gastrointestinal motility. J Physiol 597(9):2337–2360

    Article  CAS  Google Scholar 

  40. Iino S, Horiguchi K, Nojyo Y (2008) Interstitial cells of Cajal are innervated by nitrergic nerves and express nitric oxide-sensitive guanylate cyclase in the guinea-pig gastrointestinal tract. Neuroscience 152:437–448

    Article  CAS  Google Scholar 

  41. Iino S, Horiguchi K, Nojyo Y, Ward SM, Sanders KM (2009) Interstitial cells of Cajal contain signalling molecules for transduction of nitrergic stimulation in guinea pig caecum. Neurogastroenterol Motil 21(542–50):e12–e13

    Google Scholar 

  42. Iino S, Nojyo Y (2009) Immunohistochemical demonstration of c-Kit-negative fibroblast-like cells in murine gastrointestinal musculature. Arch Histol Cytol 72:107–115

    Article  CAS  Google Scholar 

  43. Iino S, Ward SM, Sanders KM (2004) Interstitial cells of Cajal are functionally innervated by excitatory motor neurones in the murine intestine. J Physiol 556:521–530

    Article  CAS  Google Scholar 

  44. Ishikawa K, Komuro T, Hirota S, Kitamura Y (1997) Ultrastructural identification of the c-kit-expressing interstitial cells in the rat stomach: a comparison of control and Ws/Ws mutant rats. Cell Tissue Res 289:137–143

    Article  CAS  Google Scholar 

  45. Keef KD, Shuttleworth CW, Xue C, Bayguinov O, Publicover NG, Sanders KM (1994) Relationship between nitric oxide and vasoactive intestinal polypeptide in enteric inhibitory neurotransmission. Neuropharmacology 33:1303–1314

    Article  CAS  Google Scholar 

  46. Kito Y, Mitsui R, Ward SM, Sanders KM (2015) Characterization of slow waves generated by myenteric interstitial cells of Cajal of the rabbit small intestine. Am J Physiol Gastrointest Liver Physiol 308:G378–G388

    Article  CAS  Google Scholar 

  47. Komuro T (2012) Atlas of interstitail cells of Cajal in the gastrointestinal tract. Springer, Dordrecht

    Book  Google Scholar 

  48. Kurahashi M, Kito Y, Baker SA, Jennings LK, Dowers JGR, Koh SD, Sanders KM (2020a) A novel postsynaptic signal pathway of sympathetic neural regulation of murine colonic motility. FASEB J 34(4):5563–5577

    Article  CAS  Google Scholar 

  49. Kurahashi M, Kito Y, Hara M, Takeyama H, Sanders KM, Hashitani H (2020b) Norepinephrine has dual effects on human colonic contractions through distinct subtypes of alpha 1 adrenoceptors. Cell Mol Gastroenterol Hepatol 10:658–671, e1

    Article  Google Scholar 

  50. Kurahashi M, Mutafova-Yambolieva V, Koh SD, Sanders KM (2014) Platelet-derived growth factor receptor-alpha-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am J Physiol Cell Physiol 307:C561–C570

    Article  CAS  Google Scholar 

  51. Kurahashi M, Nakano Y, Hennig GW, Ward SM, Sanders KM (2012) Platelet-derived growth factor receptor alpha-positive cells in the tunica muscularis of human colon. J Cell Mol Med 16:1397–1404

    Article  CAS  Google Scholar 

  52. Kurahashi M, Zheng H, Dwyer L, Ward SM, Koh SD, Sanders KM (2011) A functional role for the ‘fibroblast-like cells’ in gastrointestinal smooth muscles. J Physiol 589:697–710

    Article  CAS  Google Scholar 

  53. Langton P, Ward SM, Carl A, Norell MA, Sanders KM (1989) Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc Natl Acad Sci U S A 86:7280–7284

    Article  CAS  Google Scholar 

  54. Lies B, Beck K, Keppler J, Saur D, Groneberg D, Friebe A (2015) Nitrergic signalling via interstitial cells of Cajal regulates motor activity in murine colon. J Physiol 593:4589–4601

    Article  CAS  Google Scholar 

  55. Lies B, Gil V, Groneberg D, Seidler B, Saur D, Wischmeyer E, Jimenez M, Friebe A (2014) Interstitial cells of Cajal mediate nitrergic inhibitory neurotransmission in the murine gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 307:G98–G106

    Article  CAS  Google Scholar 

  56. Maeda H, Yamagata A, Nishlkawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa SI (1992) Requirement of c-kit for development of intestinal pacemaker system. Development 116:369–375

    Article  CAS  Google Scholar 

  57. Mitsui R, Komuro T (2002) Direct and indirect innervation of smooth muscle cells of rat stomach, with special reference to the interstitial cells of Cajal. Cell Tissue Res 309:219–227

    Article  Google Scholar 

  58. Mutafova-Yambolieva VN, Hwang SJ, Hao X, Chen H, Zhu MX, Wood JD, Ward SM, Sanders KM (2007) Beta-nicotinamide adenine dinucleotide is an inhibitory neurotransmitter in visceral smooth muscle. Proc Natl Acad Sci U S A 104:16359–16364

    Article  CAS  Google Scholar 

  59. Park KJ, Hennig GW, Lee HT, Spencer NJ, Ward SM, Smith TK, Sanders KM (2006) Spatial and temporal mapping of pacemaker activity in interstitial cells of Cajal in mouse ileum in situ. Am J Physiol Cell Physiol 290:C1411–C1427

    Article  CAS  Google Scholar 

  60. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436

    Article  CAS  Google Scholar 

  61. Putney JW (1999) “Kissin’ cousins”: intimate plasma membrane-ER interactions underlie capacitative calcium entry. Cell 99:5–8

    Article  CAS  Google Scholar 

  62. Putney JW (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  CAS  Google Scholar 

  63. Ro S, Chanjae P, Jin J, Zheng H, Blair P, Redelman D, Ward SM, Yan W, Sanders KM (2010) A model to study the phenotypic changes of interstitial cells of Cajal in gastrointestinal diseases. Gastroenterology 138:1068–1078.e2

    Article  Google Scholar 

  64. Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility--insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645

    Article  CAS  Google Scholar 

  65. Sanders KM, Ward SM, Koh SD (2014) Interstitial cells: regulators of smooth muscle function. Physiol Rev 94:859–907

    Article  CAS  Google Scholar 

  66. Seki K, Komuro T (1998) Further observations on the gap-junction-rich cells in the deep muscular plexus of the rat small intestine. Anat Embryol (Berl) 197:135–141

    Article  CAS  Google Scholar 

  67. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M (2008) Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Cell 135:110–122

    Article  CAS  Google Scholar 

  68. Sung TS, Hwang SJ, Koh SD, Bayguinov Y, Peri LE, Blair PJ, Webb TI, Pardo DM, Rock JR, Sanders KM, Ward SM (2018) The cells and conductance mediating cholinergic neurotransmission in the murine proximal stomach. J Physiol 596:1549–1574

    Article  CAS  Google Scholar 

  69. Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71:1–130

    Article  CAS  Google Scholar 

  70. Torihashi S, Ward SM, Nishikawa S, Nishi K, Kobayashi S, Sanders KM (1995) c-kit-dependent development of interstitial cells and electrical activity in the murine gastrointestinal tract. Cell Tissue Res 280:97–111

    CAS  Google Scholar 

  71. Trebak M, Zhang W, Ruhle B, Henkel MM, Gonzalez-Cobos JC, Motiani RK, Stolwijk JA, Newton RL, Zhang X (2013) What role for store-operated Ca(2)(+) entry in muscle? Microcirculation 20:330–336

    Article  CAS  Google Scholar 

  72. Van Helden DF, Imtiaz MS (2003) Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol 548:271–296

    Article  Google Scholar 

  73. Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM (1995) Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Phys 269:C1577–C1585

    Article  CAS  Google Scholar 

  74. Ward SM, Burns AJ, Torihashi S, Sanders KM (1994) Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol 480(Pt 1):91–97

    Article  CAS  Google Scholar 

  75. Werder A, Mayr M, Schneider G, Oesterle D, Fritsch RM, Seidler B, Schlossmann J, Hofmann F, Schemann M, Allescher HD, Schmid RM, Saur D (2011) Truncated IRAG variants modulate cGMP-mediated inhibition of human colonic smooth muscle cell contraction. Am J Physiol Cell Physiol 301:C1445–C1457

    Article  Google Scholar 

  76. Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69–99

    Article  CAS  Google Scholar 

  77. Wood JD (1972) Excitation of intestinal muscle by atropine, tetrodotoxin, and xylocaine. Am J Phys 222:118–125

    Article  CAS  Google Scholar 

  78. Worth AA, Forrest AS, Peri LE, Ward SM, Hennig GW, Sanders KM (2015) Regulation of gastric electrical and mechanical activity by cholinesterases in mice. J Neurogastroenterol Motil 21:200–216

    Article  Google Scholar 

  79. Yamamoto M (1977) Electron microscopic studies on the innervation of the smooth muscle and the interstitial cell of Cajal in the small intestine of the mouse and bat. Arch Histol Jpn 40:171–201

    Article  CAS  Google Scholar 

  80. Zheng H, Drumm BT, Earley S, Sung TS, Koh SD, Sanders KM (2018) SOCE mediated by STIM and Orai is essential for pacemaker activity in the interstitial cells of Cajal in the gastrointestinal tract. Sci Signal 11(534):eaaq0918

    Article  Google Scholar 

  81. Zheng H, Drumm BT, Zhu MH, Xie Y, O’Driscoll KE, Baker SA, Perrino BA, Koh SD, Sanders KM (2020) Na+/Ca2+ exchange and pacemaker activity of interstitial cells of Cajal. Front Physiol 11:230

    Article  Google Scholar 

  82. Zheng H, Park KS, Koh SD, Sanders KM (2014) Expression and function of a T-type Ca2+ conductance in interstitial cells of Cajal of the murine small intestine. Am J Physiol Cell Physiol 306:C705–C713

    Article  CAS  Google Scholar 

  83. Zhu MH, Kim TW, Ro S, Yan W, Ward SM, Koh SD, Sanders KM (2009) A Ca(2+)-activated Cl(−) conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J Physiol 587:4905–4918

    Article  CAS  Google Scholar 

  84. Zhu MH, Sung TS, Kurahashi M, O’Kane LE, O’Driscoll K, Koh SD, Sanders KM (2016) Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 311:G1037–G1046

    Article  Google Scholar 

  85. Zhu MH, Sung TS, O’Driscoll K, Koh SD, Sanders KM (2015) Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal. Am J Physiol Cell Physiol 308:C608–C620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Writing of this paper and much of the data reviewed was supported by R01 DK120759 to KMS and SAB and R01 DK-091336 to KMS and MK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenton M. Sanders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanders, K.M., Baker, S.A., Drumm, B.T., Kurahashi, M. (2022). Ca2+ Signaling Is the Basis for Pacemaker Activity and Neurotransduction in Interstitial Cells of the GI Tract. In: Spencer, N.J., Costa, M., Brierley, S.M. (eds) The Enteric Nervous System II. Advances in Experimental Medicine and Biology, vol 1383. Springer, Cham. https://doi.org/10.1007/978-3-031-05843-1_22

Download citation

Publish with us

Policies and ethics