Skip to main content
Log in

Computer Simulation of Molecular Interaction Between Baclofen and the GABAB Receptor

  • Published:
Neurophysiology Aims and scope

An Erratum to this article was published on 01 April 2017

This article has been updated

In our previous work [1], we have reconstructed the spatial structure of a full-size GABAB receptor using computer simulation. Considering the fact that baclofen is a selective agonist of this receptor, we attempted to search for binding sites of the molecule of this agent with the extracellular domain of a GABAB1 receptor subunit, assessed the molecular dynamics of their interaction, and calculated the energy of nonvalent interactions between the receptor and agonist molecule under study. A molecular docking approach used to estimate interactions between baclofen and the GABAB receptor extracellular domain allowed us to choose three sites for possible binding of the baclofen molecule to the receptor. Using molecular dynamics simulation, we identified two sites capable of providing stable coupling of baclofen with the GABAB receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 11 August 2017

    An erratum to this article has been published.

References

  1. A. Yu. Nyporko, A. M. Naumenko, A. Golius, et al., “3D reconstruction of a full-size GABAB receptors,” Neurophysiology, 47, No. 5, 364-375 (2015).

    Article  CAS  Google Scholar 

  2. N. G. Bowery and G. D. Pratt, “GABAB receptors as targets for drug action,” Arzneimittelforschung, 42, No. 2A, 215-223 (1992).

    CAS  PubMed  Google Scholar 

  3. K. A. Jones, B. Borowsky, J. A. Tamm, et al., “GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2,” Nature, 396, 674-679 (1992).

    Article  Google Scholar 

  4. K. Kaupmann, B. Malitschek, V. Schuler, et al., “GABAB receptor subtypes assemble into functional heteromeric complexes,” Nature, 396, 683-687 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. J. H. White, A. Wise, M. J. Pain, et al., “Heterodimerization is required for the formation of a functional GABA(B) receptor,” Nature, 396, 679-682 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Y. Geng, M. Bush, L. Mosyak, et al., “Structural mechanism of ligand activation in human GABA(B) receptors,” Nature, 7479, No. 504, 254-259 (2013).

    Article  Google Scholar 

  7. S. Kim, P. A. Thiessen, E. E. Bolton, et al., “PubChem substance and compound databases,” Nucl. Acids Res., 44, No. 1, 1202-1213 (2016).

    Article  Google Scholar 

  8. Y. Wang, T. Suzek, J. Zhang, et al., “PubChem BioAssay: 2014 update,” Nucl. Acids Res., 42, No. 1, 1075-1082 (2014).

    Article  Google Scholar 

  9. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian Revision, Wallingford, CT (2004).

  10. V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, “SwissParam, a fast force field generation tool for small organic molecules,” J. Comput. Chem., 11, No. 32, 2359-2368 (2011).

    Article  Google Scholar 

  11. A. Grosdidier, V. Zoete, and O. Michielin, “SwissDock, a protein-small molecule docking web service based on EADock DSS,” Nucleic Acids Res., 39 (Web Server issue), W270-W277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Grosdidier, V. Zoete, and O. Michielin, “Fast docking using the CHARMM force field with EADock DSS,” J. Comput. Chem., 32, No. 10, 2149-2159 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. S. Pronk, S. Pall, R. Schulz, et al., “GROMACS 45: a high throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics, 29, 845-854 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. K. T. O’Neil and W. F. DeGrado, “A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids,” Science, 250, 646-665 (1990).

    Article  PubMed  Google Scholar 

  15. R. S. Mulliken, “Electronic population analysis on LCAO-MO molecular wave functions,” J. Chem. Phys., 23, 1833-1840 (1955).

    Article  CAS  Google Scholar 

  16. G. Costantino, A. Macchiarulo, A.-E. Guadix, and R. Pellicciari, “QSAR and molecular modeling studies of baclofen analogues as GABAB agonists. Insights into the role of the aromatic moiety in GABAB binding and activation,” J. Med. Chem., 44, 1827-1832 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. T. C. Galvez, L. Prezeau, G. Milioti, et al., “Mapping the agonist binding site of GABAB type 1 subunit sheds light on the activation process of GABAB receptors,” J. Biol. Chem., 275, 411666-411674 (2000).

    Article  Google Scholar 

  18. C. S. Cassidy, J. Lin, and P. A. Frey, “A new concept for the mechanisms of action of chymotrypsin: the role of the low-barrier hydrogen bond,” Biochemistry, 36, 4576-4584 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. J. P. Gallivan and D. A. Dougherty, “A computational study of cation-π interactions vs salt bridges in aqueous medium. Implications for protein engineering,” J. Am. Chem. Soc., 122, 870-874 (2000).

    Article  CAS  Google Scholar 

  20. R. Wintjens, J. Lievin, M. Rooman, and E. Buisine, “Contribution of cation-pi interactions to the stability of protein-DNA complexes,” Mol. Biol., 302, No. 2, 395-410 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Naumenko.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s11062-017-9651-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumenko, A.M., Shapoval, L.M., Nyporko, A.Y. et al. Computer Simulation of Molecular Interaction Between Baclofen and the GABAB Receptor. Neurophysiology 49, 2–7 (2017). https://doi.org/10.1007/s11062-017-9623-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9623-0

Keywords

Navigation