Skip to main content
Log in

Cerebellar Nonmotor Functions – Approaches and Significance

  • Published:
Neurophysiology Aims and scope

The cerebellum is involved in the control of motor and nonmotor functions. Refined and innovative experimental and clinical approaches, starting from anatomy and including functional magnetic resonance imaging (fMRI), have allowed researchers to store extensive information on the cerebellar contributions to motor control and also helped them to understanding cerebellar nonmotor functions. Does the cerebellum process exclusively cerebral information related to certain specificactions, or does it also process some forms of information independent of such relation? At present, researchers are close to evaluating how the cerebellum is active during resolution of cognitive tasks. Various therapy lines in perspective, from cerebellar stimulation to cerbellar grafts and artificial cerebellum, are of particular significance, as they can restore lost brain functions in animal models and repair in sufficient brain processes in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ćulić and J. Šaponjić, “Methodological approaches in understanding the cerebellar motor and non motor functions,” Iugoslav. Physiol. Pharmacol. Acta, 34, 11-20 (1998).

    Google Scholar 

  2. M. Rapoport, R. van Reekum, and H. Mayberg, “The role of the cerebellum in cognition and behavior: A Selective Review,” J. Neuropsychiat. Clin. Neurosci., 12, No. 2, 193-198 (2000).

    Article  CAS  Google Scholar 

  3. J. D. Schmahmann and D. Caplan, “Cognition, emotion and the cerebellum,” Brain, 129, Part 2, 290-292 (2000).

  4. P. L. Strick, R. P. Dum, and J. A. Fiez, “Cerebellum and nonmotor function,” Annu. Rev. Neurosci., 32, 413-434 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. J. C. Eccles, M. Ito, and J. Szentagothai, The Cerebellum as a Neuronal Machine, Springer-Verlag, New York, Heidelberg (1967).

    Book  Google Scholar 

  6. S. G. Lisberger and W. T. Thach, “The cerebellum,” in: Principles of Neural Science, E. R. Kandel et al. (eds.), McGraw-Hill, New York (2013), pp. 960-981.

    Google Scholar 

  7. M. U. Manto, D. L. Gruol, J. D. Schmahmann, et al., Handbook of the Cerebellum and Cerebellar Disorders, Springer, New York (2013).

    Book  Google Scholar 

  8. J. E. Purkinje, “Neueste Untersuchungen aus der Nerven und Hirn Anatomie,“ in: Bericht uber die Versammlung Deutscher Naturforscher und Aertze in Prag, K. Stenberg und von J. V. Krombholtz (eds.), 1837, pp. 177-180.

  9. S. L. Palay and V. Chan-Palay, Cerebellar Cortex. Cytology and Organization, Springer-Verlag, Berlin (1974).

    Book  Google Scholar 

  10. T. Nagai, K. Satoh, K. Imamoto, and T. Maeda, “Divergent projections of catecholamine neurons of the locus coeruleus as revealed by fluorescent retrograde double labeling technique,” Neurosci. Lett., 23, No. 2, 117-123 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. E. Mugnaini, M. R. Diño, and D. Jaarsma, “The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry,” Prog. Brain Res., 114, 131-150 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. A. Dumoulin, A. Triller, and S. Dieudonné, “IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells,” J. Neurosci., 21, No. 16, 6045-6057 (2001).

    CAS  PubMed  Google Scholar 

  13. F. J. Geurts, E. De Schutter, and S. Dieudonné, “Unraveling the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer,” Cerebellum, 2, No. 4, 290-299 (2003).

  14. G. Moruzzi and H. W. Magoun, “Brainstem reticular formation and activation of the EEG,” EEG Clin. Neurology, 1, No. 4, 455-473 (1949).

    Article  CAS  Google Scholar 

  15. R. S. Snider, W. S. McCulloch, and H. W. Magoun “A cerebello-bulbo-reticular pathway for suppression,” J. Neurophysiol., 12, No. 5, 325-334 (1949).

    CAS  PubMed  Google Scholar 

  16. J. Voogd and M. Glickstein, “The anatomy of the cerebellum,” Trends Neurosci., 21, No. 9, 370-375 (1989).

    Article  Google Scholar 

  17. E. Dietrichs and D. E. Haines, “Interconnections between hypothalamus and cerebellum,” Anat. Embryol., 179, No. 3, 207-220 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. E. D. Adrian, “Afferent areas in the cerebellum connected with the limbs,” Brain, 66, 289-315 (1943).

    Article  Google Scholar 

  19. J. C. Eccles, R. Llinás, and K. Sasaki, “The excitatory synaptic action of climbing fibers on the Purkinje cells of the cerebellum,” J. Physiol., 182, No. 2, 268-296 (1966).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. J. C. Eccles, R. Llinás, and K. Sasaki, “Intracellularly recoded responses of the cerebellar Purkinje cells,” Exp. Brain Res., 1, 161-183 (1966).

    CAS  PubMed  Google Scholar 

  21. M. Ito, The Cerebellum and Neural Control, Raven Press, New York (1984).

    Google Scholar 

  22. M. Ito, The Cerebellum: Brain for an Implicit Self, FT Press, New Jersey (201 1).

  23. M. Ito, “Control of mental activities by internal models in the cerebellum,” Nat. Rev. Neurosci., 9, No. 4, 304- 313 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. J. Laurens, S. A. Heiney, G. Kim, and P. M. Blazquez, “Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition,” PLoS One, 8, No. 12:e82239 (2013).

  25. M. Szemes, R. L. Davies, C. L. Garden, and M. M. Usowicz, “Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down’s syndrome,” Mol. Brain, 6, No. 33 (2013).

  26. S. Rieubland, A. Roth, and M. Häusser “Structured connectivity in cerebellar inhibitory networks,” Neuron, 81, No. 4, 913-929 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. M. E. Forero-Vivas and A. Hernández-Cruz, “Increased firing frequency of spontaneous action potentials in cerebellar Purkinje neurons of db/db mice results from altered auto-rhythmicity and diminished GABAergic tonic inhibition,” Gen. Physiol. Biophys., 33, No. 1, 29-41 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. M. G. Lamont and J. T. Weber, “The role of calcium in synaptic plasticity and motor learning in the cerebellar cortex,” Neurosci. Biobehav. Rev., 36, No. 4, 1153-1162 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. J. Chaumont, N. Guyon, A. M. Valera, et al., “Clusters of cerebellar Purkinje cells control their afferent climbing fiber discharge,” Proc. Natl. Acad. Sci. USA, 110, No. 40, 16223-16228 (2013).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. G. J. Blatt, A. L.Oblak, and J. D. Schmahmann, “Cerebellar connections with limbic circuits: Anatomy and functional implications,” in: Handbook of the Cerebellum and Cerebellar Disorders, Springer, New York (2013), pp. 479-496.

  31. H. Haavik and B. A. Murphy “Selective changes in cerebellar-cortical processing following motor training,” Exp. Brain Res., 231, No. 4, 397-403 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. D. J. Bauer, T. C. Peterson, and R. A. Swain, “Cerebellar dentate nuclei lesions alter prefrontal cortex dendritic spine morphology,” Brain Res., 1544, 15-24 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. T. C. Watson, N. Becker, R. Apps, and M. W. Jones, “Back to front: cerebellar connections and interactions with the prefrontal cortex,” Front. Syst. Neurosci., 8, No. 4, doi: 10.3389/fnsys.2014.00004 (2014).

  34. V. Perciavalle, R. Apps, V. Bracha, et al, “Consensus paper: Current views on the role of cerebellar interpositus nucleus in movement control and emotion,” Cerebellum, 12, No. 5, 738-757 (2013).

  35. E. D’Angelo, S. K. Koekkoek, P. Lombardo, et al., “Timing in the cerebellum: oscillations and resonance in the granular layer,” Neuroscience, 162, No. 3, 805- 815 (2009).

  36. J. Gross, L. Timmermann, J. Kujala, et al. “The neural basis of intermittent motor control in humans,” Proc. Natl. Acad. Sci. USA, 99, No. 4, 2299-2302 (2002).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. S. S. Dalal, A. G. Guggisberg, E. Edwards, et al., “Fivedimensional neuroimaging: localization of the timefrequency dynamics of cortical activity,” NeuroImage, 40, No. 4, 1686-1700 (2008).

  38. M. Ćulić, L. M. Blanuša, G. Grbić, et al., “Spectral analysis of cerebellar activity after acute brain injury in anesthetized rats,” Acta Neurobiol. Exp., 65, No. 1, 11-17 (2005).

    Google Scholar 

  39. S. Spasić, M. Ćulić, G. Grbić, et al., “Spectral and fractal analysis of cerebellar activity after single and repeated brain injury,” Bull. Math. Biol., 70, No. 4, 1235-1249 (2008).

    Article  PubMed  Google Scholar 

  40. G. Keković, G. Stojadinović, L. Martać, et al. “Spectral and fractal measures of cerebellar and cerebral activity in various types of anesthesia,” Acta Neurobiol. Exp., 70, No. 1, 67-75 (2010).

    Google Scholar 

  41. S. S. Dalal, D. Osipova, O. Bertrand, and K. Jerbi, “Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited,” Neurosci. Biobehav. Rev., 37, No. 4, 585-593 (2013).

    Article  PubMed  Google Scholar 

  42. L. Levisohn, A. Cronin-Golomb, and J. D. Schmahmann, ”Neuropsychological consequences of cerebellar tumour resection in children. Cerebellar cognitive affective syndrome in a paediatric population,” Brain, 123, Part 5, 1041-1050 (2000).

  43. B. Gottwald, B. Wilde, Z. Mihajlovic, and H. M. Mehdorn, “Evidence for distinct cognitive deficits after focal cerebellar lesions,” J. Neurol. Neurosurg. Psychiat., 75, No. 11, 1524-1531 (2004).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. B. Schoch, A. Dimitrova, E. R. Gizewski, and D. Timmann, “Functional localization in the human cerebellum based on voxelwise statistical analysis: A study of 90 patients,” NeuroImage, 30, No. 1, 36-51 (2006).

  45. D. Timmann, J. Drepper, M. Frings, et al., “The human cerebellum contributes to motor, emotional and cognitive associative learning. A review,” Cortex, 46, No. 7, 845-857 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. E. Brunamonti, F. R. Chiricozzi, S. Clausi, et al., “Cerebellar damage impairs executive control and monitoring of movement generation,” PLoS One, 9, No. 1: e85997 (2014).

  47. V. Y. Wang and H. Y. Zoghbi, “Genetic regulation of cerebellar development,” Nat. Rev. Neurosci., 2, No. 7, 484-491 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. G. Sekerková, E. Ilijic, E. Mugnaini, and J. F. Baker, “Otolith organ or semicircular canal stimulation induces c-fos expression in unipolar brush cells and granule cells of cat and squirrel monkey,” Exp. Brain Res., 164, No. 3, 286-300 (2005).

  49. S. A. Sajan, K. E. Waimey, and K. J. Millen, “Novel approaches to studying the genetic basis of cerebellar development,” Cerebellum, 9, No. 3, 272-283 (2010).

  50. P. T. Tsai, C. Hull, Y. Chu, et al., “Autistic-like behavior and cerebellar dysfunction in Purkinje cell TSC1 mutant mice,” Nature, 488, No. 7413, 647-651 (2012).

  51. Z. Purkartova, J. Tuma, M. Pesta, et al. “Morphological analysis of embryonic cerebellar grafts in SCA2 mice,” Neurosci. Lett., 558, 154-158 (2014)

    Article  CAS  PubMed  Google Scholar 

  52. M. J. Green and R. J. T. Wingate, “Developmental origins of diversity in cerebellar output nuclei,” Neural Dev., 9, No. 1: doi:10.1186/1749-8104-9-1 (2014).

  53. S. Tanaka, S. Y. Kawaguchi, G. Shioi, and T. Hirano “Long-term potentiation of inhibitory synaptic transmission onto cerebellar Purkinje neurons contributes to adaptation of vestibulo-ocular reflex,” J. Neurosci., 33, No. 43, 17209-17220 (2013)

    Article  CAS  PubMed  Google Scholar 

  54. M. Kayakabe, T. Kakizaki, R. Kaneko, et al., “Motor dysfunction in cerebellar Purkinje cell-specific vesicular GABA transporter knockout mice,” Front Cell Neurosci., 7, No. 286: doi: 10.3389/fncel.2013.00286. (2013)

  55. Z. J. Huang, H. Taniguchi, M. He, and S. Kuhlman, “Genetic labeling of neurons in mouse brain,” Cold Spring Harb. Protoc. 2014, No. 2, 150-160 (2014).

    PubMed  Google Scholar 

  56. V. V. Belzil, P. O. Bauer, T. F. Gendron, et al., “Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients,” Brain Res., 1584, 15-21 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. P. T. Fox, M. E. Raichle, and W. T. Thach, “Functional mapping of the human cerebellum with positron emission tomography,” Proc. Natl. Acad. Sci. USA, 82, No. 21, 7462-7466 (1985).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. J. Diedrichsen, T. Verstynen, J. Schlerf, and T. Wiestler, “Advances in functional imaging of the human cerebellum,” Current Opin. Neurol., 23, No. 4, 382-387 (2010).

    Google Scholar 

  59. N. K. Logothetis, J. Pauls, M. Augath, et al. “Neurophysiological investigation of the basis of the fMRI signal,” Nature, 412, No. 6843, 150-157 (2001).

  60. J. E. Desmond, J. D. Gabrieli, A. D. Wagner, et al., “Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI,” J. Neurosci., 17, No. 24, 9675-9685 (1997).

    CAS  PubMed  Google Scholar 

  61. C. Howarth, C. M. Peppiatt-Wildman, and D. Attwell, “The energy use associated with neural computation in the cerebellum,” J. Cerebr. Blood Flow Metab., 30, No. 2, 403-414 (2010).

    Article  Google Scholar 

  62. Y. Zhang, C. Forster, T. A. Milner, and C. Iadecola, “Attenuation of activity-induced increases in cerebellar blood flow by lesion of the inferior olive,” Am. J. Physiol. Heart Circ. Physiol., 285, No. 3, 1177-1182 (2003).

    Article  Google Scholar 

  63. K. Thomsen, H. Piilgaard, A. Gjedde, et al., “Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex,” J. Neurophysiol., 102, No. 3, 1503-1512 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. R. G. Heath, C. W. Dempesy, C. J. Fontana, and A. T. Fitzjarrell, “Feedback loop between cerebellum and septal-hippocampal sites: its role in emotion and epilepsy,” Biol. Psychiat., 15, No. 4, 541-556 (1980).

    CAS  PubMed  Google Scholar 

  65. M. Ćulić, J. Saponjić, B. Janković, and L. Rakić, “Effect of cerebellar stimulation on EEG power spectra in the acute model of epilepsy,” Ind. J. Med. Res., 100, 135-139 (1994).

    Google Scholar 

  66. C. Rubio, V. Custodio, F. Juárez, and C. Paz, “Stimulation of the superior cerebellar peduncle during the development of amygdaloid kindling in rats,” Brain Res., 1010, Nos. 1/2, 151-155 (2004).

  67. F. Velasco, J. D. Carrillo-Ruiz, F. Brito, et al., “Doubleblind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures,” Epilepsia, 46, No. 7, 1071-1081 (2005).

  68. K. N. Fountas, E. Kapsalaki, and G. Hadjigeorgiou, “Cerebellar stimulation in the management of medically intractable epilepsy: a systematic and critical review,” Neurosurg. Focus, 29, No. 2:E8 (2010).

  69. G. Koch, M. Oliveri, S. Torriero, et al., “Repetitive TMS of cerebellum interferes with millisecond time processing,” Exp. Brain Res., 179, No. 2, 291-299 (2007).

    Article  PubMed  Google Scholar 

  70. B. S. Hoffland, M. Bologna, P. Kassavetis, et al., “Cerebellar theta burst stimulation impairs eyeblink classical conditioning,” J. Physiol., 590, Part 4, 887-897 (2012).

  71. K. Macher, A. Böhringer, A. Villringer, and B. Pleger, “Cerebellar-parietal connections underpin phonological storage,” J. Neurosci., 34, No. 14, 5029-5037 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. S. P. Tomlinson, N. J. Davis, and R. M. Bracewell, “Brain stimulation studies of non-motor cerebellar function: a systematic review,” Neurosci. Biobehav. Rev., 37, No. 5, 766-789 (2013).

    Article  PubMed  Google Scholar 

  73. R. Ferrucci and A. Priori, “Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions,” NeuroImage 85, Part 3, 918-923 (2014).

  74. G. Grimaldi, G. P. Argyropoulos, A. Boehringer, et al., “Noninvasive cerebellar stimulation – A consensus paper,” Cerebellum, 13, No. 1, 121-138 (2014).

  75. C. J. Price, D. W. Green, and R. von Studnitz, “A functional imaging study of translation and language switching,” Brain, 122, No. 12, 2221-2235 (1999).

  76. S. S. Ghosh, J. A. Tourville, and F. H. Guenther, “A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables,” J. Speech Lang. Hear. Res., 51, No. 5, 1183-1202 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  77. G. P. Argyropoulos and N. G. Muggleton, “Effects of cerebellar stimulation on processing semantic associations,” Cerebellum, 12, No. 1, 83-96 (2013).

  78. P. Hubrich-Ungureanu, N. Kaemmerer, F. A. Henn, and D. F. Braus, “Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in health volunteers,” Neurosci. Lett., 319, No. 2, 91-94 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. R. L. Buckner, “The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging,” Neuron, 80, No. 3, 807-815 (2013).

  80. O. Šveljo, K. Koprivšek, M. Lučić, and N. Prvulović, Counting and language,” Prilozi, 33, No. 1, 411-418 (2012).

  81. O. Šveljo, K. Koprivšek, M. Lučić, et al., “Identification of speech brain zones by fMRI” [in Serbian], in: Proc. 8th Conf. Digit. Speech Image Process. – DOGS (Serbia 2010), pp. 116-119.

  82. O. Šveljo, M. Ćulić, K Koprivšek and M. Lučić, “The functional neuroimaging evidence of cerebellar involvement in the simple cognitive task,” Brain Imaging Behav., 8, No. 4, 480-486 (2014).

    Article  PubMed  Google Scholar 

  83. Y. Onuki, E. J. Van Someren, C. I. De Zeeuw, and Y. D. Van der Werf, “Hippocampal–cerebellar interaction during spatio-temporal prediction,” Cereb. Cortex, 25, No. 2, 313-321 (2013).

    Article  PubMed  Google Scholar 

  84. E. Keren-Happuch, S. H. Chen, M. H. Ho, and J. E. Desmond, “A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies,” Human. Brain Mapp., 35, No. 2, 593-615 (2014).

    Article  Google Scholar 

  85. F. Van Overwalle, K. Baetens, P. Mariën, and M. Vandekerckhove, “Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies,” NeuroImage, 86, 554-572 (2014).

    Article  PubMed  Google Scholar 

  86. L. F. Koziol, D. Budding, N. Andreasen, et al., “Consensus paper: The cerebellum’s role in movement and cognition,” Cerebellum, 13, No. 1, 151-177 (2014).

  87. P. Strata, B. Scelfo, and B. Sacchetti, “Involvement of cerebellum in emotional behavior,” Physiol. Res., 60, Suppl. 1, S39-S48 (2011).

    PubMed  Google Scholar 

  88. A. C. Gianlorenço, K. R. Serafim, A. Canto-de-Souza, and R. Mattioli, “Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice,” Braz. J. Med. Biol. Res., 47, No. 2, 135-143 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  89. A. Miller, H. Pratt, and R. B. Schiffer, “Pseudobulbar affect: the spectrum of clinical presentations, etiologies and treatments,” Expert Rev. Neurother., 11, No. 7, 1077-1088 (2011).

    Article  PubMed  Google Scholar 

  90. C. K. Schraa-Tam, W. J. Rietdijk, W. J. Verbeke, et al., “fMRI activities in the emotional cerebellum: a preference for negative stimuli and goal-directed behavior,” Cerebellum, 11, No. 1, 233-245 (2012).

  91. N. C. Andreasen and R. Pierson, “The role of the cerebellum in schizophrenia,” Biol. Psychiat., 64, No. 2, 81-88 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  92. S. Lippmann, M. Manshadi, H. Baldwin, et al., “Cerebellar vermis dimensions on computerized tomographic scans of schizophrenic and bipolar patients,” Am. J. Psychiat., 139, No. 5, 667-668 (1982).

    Article  CAS  PubMed  Google Scholar 

  93. M. Belmonte and R. Carper, “Neuroanatomical and neurophysiological clues to the nature of autism,” in: Neuroimaging in Child Neuropsychiatric Disorders, B. Garreau (ed.), Springer-Verlag, Heidelberg (1998), pp. 157-171.

    Chapter  Google Scholar 

  94. T. D. Rogers, P. E. Dickson, D. H. Heck, et al., “Connecting the dots of the cerebro-cerebellar role in cognitive function: Neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex,” Synapse, 65, No. 11, 1204-1212 (2011).

  95. B. Johnson, C. Stanley-Cary, J. Fielding, et al., “Cerebellum and the psychopathology of autism and Asperger’s disorder,” in: Comprehensive Guide to Autism, V. B. Patel et al. (eds.), Springer, New York (2014), pp. 845-863.

    Chapter  Google Scholar 

  96. C. L. Marvel, M. L. Faulkner, E. C. Strain, et al., “An fMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients,” Cerebellum, 11, No. 1, 300-310 (2012).

  97. C. Y. Saab and W. D. Willis, “Nociceptive visceral stimulation modulates the activity of cerebellar Purkinje cells,” Exp. Brain Res., 140, No. 1, 122-126 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. E. A. Moulton, I. Elman, G. Pendse, et al., “Aversionrelated circuitry in the cerebellum: responses to noxious heat and unpleasant images,” J. Neurosci., 31, No. 10, 3795-3804 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. C. E. Hagains, A. K. Senapati, P. J. Huntington, et al. “Inhibition of spinal cord dorsal horn neuronal activity by electrical stimulation of the cerebellar cortex,” J. Neurophysiol., 106, No. 5, 2515-2522 (2011).

    Article  PubMed  Google Scholar 

  100. O. P. Thandon, V. Malhotra, P. Vijayabhaskar, and P. R. Shankar, “Cerebellar control of visceral responses – possible mechanisms involved,” Ind. J. Exp. Biol., 44, No. 6, 429-435 (2006).

    Google Scholar 

  101. L. M. Parsons, D. Denton, G. Egan, et al., “Neuroimaging evidence implicating cerebellum in support of sensory cognitive processes associated with thirst,” Proc. Natl. Acad. Sci. USA, 97, No. 5, 2332-2336 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. J. Kattoor, M. Thürling, E. R. Gizewski, et al., “Cerebellar contributions to different phases of visceral aversive extinction learning,” Cerebellum, 13, No. 1, 1-8 (2014).

  103. T. C. Hall, A. K. H. Miller, and J. A. N. Corsellis, “Variations in human Purkinje cell population according to age and sex,” Neuropathol. Appl. Neurobiol., 1, No. 3, 267-292 (1975).

    Article  Google Scholar 

  104. N. Raz, I. J. Torres, W. D. Spencer, et al., “Age-related regional differences in cerebellar vermis observed in vivo,” Arch. Neurol., 49, No. 4, 412-416 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. M. J. Hogan, R. T. Staff, B. P. Bunting, et al., “Cerebellar brain volume accounts for variance in cognitive performance in older adults,” Cortex, 47, No. 4, 441-450 (2011).

  106. N. K. Nadkarni, K. A. Nunley, H. Aizenstein, et al., ”Association between cerebellar gray matter volumes, gait speed, and information-processing ability in older adults enrolled in the Health ABC study,” J. Gerontol. Biol. Sci. Med. Sci., 69, No. 8, 996-1003 (2013).

  107. X. Wu, X. Jiang, A. M. Marini, and R. H. Lipsky, “Delineating and understanding cerebellar neuroprotective pathways: Potential implication for protecting the cortex,” Ann. New York Acad. Sci., 1053, 39-47 (2005).

    Article  CAS  Google Scholar 

  108. T. T. Rohn, L. W. Catlin, and W. W. Poon, “Caspasecleaved glial fibrillary acidic protein within cerebellar white matter of the Alzheimer’s disease brain,” Int. J. Clin. Exp. Pathol., 6, No. 1, 41-48 (2013).

    PubMed Central  CAS  PubMed  Google Scholar 

  109. F. Di Lorenzo, A. Martorana, V. Ponzo, et al., “Cerebellar theta burst stimulation modulates short latency afferent inhibition in Alzheimer’s disease patients,” Front. Aging Neurosci., 5, No. 2. doi: 10.3389/fnagi.2013.00002 (2013).

  110. M. Napolitano, L. Costa, R. Piacentini, et al., “17β-Estradiol protects cerebellar granule cells against β-amyloid-induced toxicity via the apoptotic mitochondrial pathway,” Neurosci. Lett., 561, 134-139 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. E. Courchesne and G. Allen, “Prediction and preparation, fundamental functions of the cerebellum,” Learning Memory, 4, No. 1, 1-35 (1997).

  112. D. Timmann and I. Daum, “Cerebellar contributions to cognitive functions: A progress report after two decades of research,” Cerebellum, 6, No. 3, 159-162 (2007).

  113. J. A. Bernard, R. D. Seidler, K. M. Hassevoort, et al., “Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and selforganizing map approaches,” Front. Neuroanat., 6, No. 31, doi:10.3389/fnana.2012.00031 (2012).

  114. J. H. Balsters, C. D. Whelan, I. H. Robertson, and N. Ramnani, “Cerebellum and cognition: Evidence for the encoding of higher order rules,” Cerebr. Cortex, 23, No. 6, 1433-1443 (2013).

    Article  Google Scholar 

  115. V. Braitenberg and R. P. Atwood, “Morphological observations on the cerebellar cortex,” J. Comp. Neurol., 109, No. 1, 1-33 (1958).

    Article  CAS  PubMed  Google Scholar 

  116. V. Braitenberg, D. Heck, and F. Sultan, “The detection and generation of sequences as a key to cerebellar function: Experiments and theory,” Behav. Brain Sci., 20, No. 2, 229-277 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. D. Marr, “A theory of cerebellar cortex,” J. Physiol., 202, No. 2, 437-471 (1969).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. J. S. Albus, “A theory of cerebellar function,” Math. Biosci., 10, 25-51 (1971).

    Article  Google Scholar 

  119. R. B. Ivry, R. M. Spencer, N. H. Zelaznik, and J. Diedrichsen, “The cerebellum and event timing,” Ann. New York Acad. Sci., 978, 302-317 (2002).

    Article  Google Scholar 

  120. N. R. Luque, J. A. Garrido, R. R. Carrillo, et al., “Adaptive cerebellar spiking model embedded in the control loop: Context switching and robustness against noise,” Int. J. Neural Syst., 21, No. 5, 385-401 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. I. B. Kulagina, T. Launey, V. I. Кukushka, and S. M. Ко- rogod, “Conversion of electrical and synaptic actions into impulse discharge patterns in Purkinje neurons with active dendrites: A simulation study,” Neurophysiology, 44, No. 3, 187-200 (2012).

  122. D. Z. Wetmore, E. A. Mukamel, and M. J. Schnitzer, “Lock-and-key mechanisms of cerebellar memory recall based on rebound currents,” J. Neurophysiol., 100, No. 4, 2328-2347 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  123. P. Dean, S. Anderson, J. Porrill, and H. Jörntell, “An adaptive filter model of cerebellar zone C3 as a basis for safe limb control?” J. Physiol., 591, Part 22, 5459-5474 (2013).

  124. J. A. Taylor and R. B. Ivry, “Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning,” Prog. Brain Res., 210, 217-253 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  125. T. Moberget, E. H. Gullesen, S. Andersson, et al., “Generalized role for the cerebellum in encoding internal models: Evidence from semantic processing,” J. Neurosci., 34, No. 8, 2871-2878 (2014).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. E. D’Angelo and S. Casali, “Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition,” Front. Neural Circ., 6, No. 116, doi: 10.3389/fncir.2012.00116 (2012).

  127. A. Giovannucci, S. A. Bamford, I. Herreros, et al., “Replacing a cerebellar microcircuit with an autonomous neuroprosthetic device,” in: 40th SFN Annual Meeting (San Diego, Nov. 13-17, 2010), San Diego (2010), No. 786.18.

  128. P. F. Verschure and M. Mintz, “A real-time model of the cerebellar circuitry underlying classical conditioning: A combined simulation and robotics study,” Neurocomputing, 38/40, 1019-1024 (2001).

  129. D. Prochnow, S. Bermúdez i Badia, J. Schmidt, et al., “A functional magnetic resonance imaging study of visuomotor processing in a virtual reality-based paradigm: Rehabilitation Gaming System,” Eur. J. Neurosci., 37, No. 9, 1441-1447 (2013).

  130. L. F. Koziol, D. E. Budding, and D. Chidekel, “From movement to thought: executive function, embodied cognition, and the cerebellum,” Cerebellum, 11, No. 2, 505-525 (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Šveljo or M. Ćulić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šveljo, O., Ćulić, M. Cerebellar Nonmotor Functions – Approaches and Significance. Neurophysiology 47, 337–347 (2015). https://doi.org/10.1007/s11062-015-9541-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9541-y

Keywords

Navigation