Skip to main content

Neuroanatomical and neurophysiological clues to the nature of autism

  • Chapter
Neuroimaging in child neuropsychiatric disorders

Abstract

Of all the developmental brain disorders, autism is perhaps the most fascinating, the most mysterious, and the most telling fascinating, because of its impact on absolutely every aspect of a child’s perception of and interaction with the surrounding world; mysterious, because of the complexity of the many interacting brain systems it perturbs; telling, because it strikes at the social, cognitive, and linguistic abilities that seem, at least on the surface, so essential to one’s very humanity. During the past few decades, the riddle of autism has begun to yield to advances in the study of autistic behaviour and the biological foundations which affect it. The examination of brain anatomy, physiology, histology and function in people with autism continues to supply new information on the nature and aetiology of this complex syndrome. This chapter will focus primarily on the neuroanatomical and neurophysiological abnormalities found in autistic subjects, particularly those seen in magnetic resonance imaging (MRI) and event-related potential (ERP) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrien JL, Perrot A, Sauvage D, Leddet E, Larmande C, Hameury L, Barthélémy C (1992) Early symptoms in autism from family home movies. Evaluation and comparison between ist and 2nd year of life using I.B.S.E. scale. Acta Pædopsychiatrica 55 2: 71–75

    PubMed  CAS  Google Scholar 

  • Akshoomoff NA, Courchesne E (1992) A new role for the cerebellum in cognitive operations. Behav Neurosci 106 5: 731–738

    PubMed  CAS  Google Scholar 

  • Akshoomoff NA, Courchesne E (1994) ERP evidence for a shifting attention deficit in patients with damage to the cerebellum. J Cogn Neurosci 6 4: 388–399

    Google Scholar 

  • Allen G, Buxton RB, Wong EC, Courchesne E (submitted) Attention activates the cerebellum independently of motor involvement American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edition. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Attig E, Botez MI, Hublet C, Vervonck C, Jacquy J, Capon A (1991) Diaschisis cérébral croisé par lésion cérébel-leuse: Röle du cervelet dans les fonctions mentales. Rev Neurol 147 3: 200–207

    PubMed  CAS  Google Scholar 

  • Bachevalier J (1994) Medial temporal lobe structures and autism: A review of clinical and experimental findings. Neuropsychologia 32 6: 627–648

    PubMed  CAS  Google Scholar 

  • Baron-Cohen S (1989) The autistic child’s theory of mind: A case of specific developmental delay. J Child Psychol Psychiat 30 2: 285–297

    PubMed  CAS  Google Scholar 

  • Baron-Cohen S, Ring H, Moriarty J, Schmitz B, Costa D, Ell P (1994) Recognition of Mental State Terms. Clinical findings in children with autism and a functional neuroimaging study of normal adults. British J Psychiat 165 5: 640–649

    CAS  Google Scholar 

  • Bauman ML (1991) Microscopic neuroanatomic abnormalities in autism. Pediatrics 87 5: 791–796

    PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35 6: 866–874

    PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (1993) The Contribution of Neu-ropathologic Studies to the Understanding of Autism. Neurol Clinics 11 1: 175–187

    Google Scholar 

  • Belmonte M (1997a) Shifts of Visual Spatial Attention Modulate a Steady-State Visual Evoked Potential. In preparation

    Google Scholar 

  • Belmonte M (1997b) A Software System for Analysis of Steady-State Evoked Potentials. In preparation

    Google Scholar 

  • Belmonte M (1997c) Abnormal Spatial Attention in Autism Demonstrated by Lack of Modulation of a Steady-State Visual Evoked Potential. In preparation

    Google Scholar 

  • Belmonte M, Egaas B, Townsend J, Courchesne E (1995) NMR intensity of corpus callosum differs with age but not with diagnosis of autism. NeuroReport 6 9: 1253–1256

    PubMed  CAS  Google Scholar 

  • Bryson SE, Wainwright-Sharp JA, Smith IM (1990) Autism: A developmental spatial neglect syndrome? In: Enns JT (ed) The development of attention: Research and theory. Elsevier, Amsterdam, p 405

    Google Scholar 

  • Casey BJ, Gordon CT, Mannheim GB, Rumsey JM (1993) Dysfunctional attention in autistic savants. J Clin Exp Neuropsychol 15 6: 933–946

    PubMed  CAS  Google Scholar 

  • Cook EH (1990) Autism: Review of neurochemical investigation. Synapse 6 3: 292–308

    PubMed  CAS  Google Scholar 

  • Cook EH, Charak DA, Arida J, Spohn JA, Roizen NJ, Leventhal BL (1994) Depressive and obsessive-compulsive symptoms in hyperserotonemic parents of children with autistic disorder. Psychiat Res 52 1: 25–33

    Google Scholar 

  • Ciesielski KT, Courchesne E, Elmasian R (1990) Effects of focused selective attention tasks on event-related potentials in autistic and normal individuals. Electroencepha-logr Clin Neurophysiol 075 3: 207–220[erratum in 766: 566 (1990)]

    CAS  Google Scholar 

  • Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D, Knell E, Kocsis P, Baumgarten R, Kovacs BW, Levy DL, Smith M, Borison RL, Evans DD, Klein DN, MacMurray J, Tosk JM, Sverd J, Gysin R, Flanagan SD (1991) The dopamine D2 receptor locus as a modifying gene in neuropsychiatric isorders. J Am Med Ass 266 13: 1793–1800

    CAS  Google Scholar 

  • Courchesne E, Hesselink JR, Jernigan TL, Yeung-Cour-chesne R (1987) Abnormal neuroanatomy in a non-retarded person with autism. Unusual Findings with Magnetic Resonance Imaging. Arch Neurol 44 3: 335–341

    PubMed  CAS  Google Scholar 

  • Courchesne E, Kilman B, Galambos R, Lincoln A (1984) Autism: processing of novel auditory information assessed by event-related brain potentials. Electroence-phalogr Clin Neurophysiol 59 3: 238–248

    Google Scholar 

  • Courchesne E, Lincoln A, Kilman B, Galambos R (1985) Event-related brain potential correlates of the processing of novel visual and auditory information in autism. J Autism Dev Disord 15 1: 55–76

    PubMed  CAS  Google Scholar 

  • Courchesne E, Lincoln A, Yeung-Courchesne R, Elmasian R, Grillon C (1989) Pathophysiologic findings in non-retarded autism and receptive developmental language disorder. J Autism Dev Disord 19 1: 1–17

    PubMed  CAS  Google Scholar 

  • Courchesne E, Press G, Yeung-Courchesne R (1993) Parietal lobe abnormalities detected with MR in patients with infantile autism. Am J Roentgenol 160 2: 387–393

    CAS  Google Scholar 

  • Courchesne E, Saitoh O, Yeung-Courchesne R, Press G, Lincoln A, Haas R, Schreibman L (1994) Abnormality of cerebellar vermian lobules VI and VII in patients with infantile autism: Identification of hypoplastic and hyperplastic subgroups with MR imaging. Am J Roentgenol 162 1: 123–30

    CAS  Google Scholar 

  • Courchesne E, Townsend J, Saitoh O (1994) The brain in infantile autism: Posterior fossa structures are abnormal. Neurology 44 2: 214–223

    PubMed  CAS  Google Scholar 

  • Courchesne E, Yeung-Courchesne R, Press G, Hesselink JR, Jernigan TL (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism, N Engl J Med 318 21:1349–1354

    PubMed  CAS  Google Scholar 

  • Crepel F (1982) Regression of functional synapses in the immature mammalian cerebellum. Trends Neurosci 5: 266–269

    Google Scholar 

  • Crispino L, Bullock TH (1984) Cerebellum mediates modality-specific modulation of sensory responses of the midbrain and forebrain in rat. Proc Nat Acad Sei 81 9: 2917–2920

    CAS  Google Scholar 

  • Damasio A, Maurer R (1978) A neurological model for childhood autism. Arch Neurol 35 12: 777–786

    PubMed  CAS  Google Scholar 

  • Daniels WW, Warren RP, Odell JD, Maciulis A, Burger RA, Warren WL, Torres AR (1995) Increased frequency of the extended or ancestral haplotype B44-SC30-DR4 in autism. Neuropsychobiology 32 3: 120–123

    PubMed  CAS  Google Scholar 

  • Davila-Garcia MI, Azmitia EC (1989) Effects of acute and chronic administration of leu-enkephalin on cultured serotonergic neurons: Evidence for opioids as inhibitory neuronal growth factors. Dev Brain Res 49 1: 97–103

    CAS  Google Scholar 

  • DeLong GR, Bean SC, Brown FR (1981) Acquired reversible autistic syndrome in acute encephalopathic illness in children. Arch Neurol 38 3: 191–194

    Google Scholar 

  • DeLong GR, Nohria C (1994) Psychiatric family history and neurological disease in autistic spectrum disorders. Dev Med Child Neurol 36 5: 441–448

    Google Scholar 

  • DeLong GR (1992) Autism, amnesia, hippocampus, and learning. Neurosci Biobehav Rev 16 1: 63–70

    Google Scholar 

  • Deonna T (1991) Acquired epileptiform aphasia in children (Landau-Kleffner Syndrome). J Clin Neurophysiol 8: 288–298

    PubMed  CAS  Google Scholar 

  • Egaas B, Courchesne E, Saitoh O (1995) Reduced size of corpus callosum in autism. Arch Neurol 52 8: 794–801

    PubMed  CAS  Google Scholar 

  • Filipek PA (1995) Quantitative magnetic resonance imaging in autism: The cerebellar vermis. Curr Opin Neurol 8: 134–138

    PubMed  CAS  Google Scholar 

  • Filipek PA, Richelme C, Kennedy DN, Rademacher J, Pitcher DA, Zidel S, Caviness VS (1992) Morphometric analysis of the brain in developmental language disorders and autism (abstract). Ann Neurol 32: 475

    Google Scholar 

  • Folstein S, Rutter M (1977) Infantile autism: A genetic study of 21 twin pairs. J Child Psychol Psychiat 18 4: 297–321

    PubMed  CAS  Google Scholar 

  • Gaffney GR, Tsai LY, Kuperman S, Minchin S (1987) Cerebellar structure in autism. Am J Dis Child 141 12: 1330–1332

    PubMed  CAS  Google Scholar 

  • Gao J-H, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272: 545–547

    PubMed  CAS  Google Scholar 

  • Garber HJ, Ritvo ER (1992) Magnetic resonance imaging of the posterior fossa in autistic adults. Am J Psychiat 149: 245–247

    PubMed  CAS  Google Scholar 

  • George MS, Costa DC, Kouris K, Ring HA, Ell PJ (1992) Cerebral blood flow abnormalities in adults with infantile autism. J Nerv Ment Dis 180 7: 413–417

    Google Scholar 

  • Gillberg C (1986) Onset at age 14 of a typical autistic syndrome. A case report of a girl with herpes simplex encephalitis. J Autism Dev Disord 16 3: 369–375

    PubMed  CAS  Google Scholar 

  • Gillberg C, Trygstad O, Foss I (1982) Childhood psychosis and urinary excretion of peptides and protein-associated peptide complexes. J Autism Dev Disord 12 3: 229–241

    Google Scholar 

  • Gillberg C, Terenius L, Lonnerholm G (1985) Endorphin activity in childhood psychosis: Spinal fluid in 29 cases. Arch Gen Psychiat 42 8: 780–783

    PubMed  CAS  Google Scholar 

  • Gillberg 1C (1991) Autistic syndrome with onset at age 31 years: Herpes encephalitis as a possible model for childhood autism. Dev Med Child Neurol 33 10: 920–924

    PubMed  CAS  Google Scholar 

  • Haas RH, Townsend J, Courchesne E, Lincoln AJ, Schreibman L, Yeung-Courchesne R (1996) Neurologic abnormalities in infantile autism. J Child Neurol 11: 84–92

    PubMed  CAS  Google Scholar 

  • Hallett M, Lebiedowska MK, Thomas SL, Stanhope SJ, Denckla MB, Rumsey J (1993) Locomotion of autistic adults. Arch Neurol 50 12: 1304–1308

    PubMed  CAS  Google Scholar 

  • Harter MR, Anllo-Vento L (1991) Visual-spatial attention: Preparation and selection in children and adults. In: Brunia CHM, Mulder G, Verbaten MN (eds) Event-related brain research. Elsevier, New York, p 183

    Google Scholar 

  • Harter MR, Miller SL, Price NJ, LaLonde ME, Keyes AL (1989) Neural processes involved in directing attention. J Cogn Neurosci 1 3: 223–237

    Google Scholar 

  • Hashimoto T, Tayama M, Miyazaki M, Murakawa K, Kuroda Y (1993) Brainstem and cerebellar vermis involvement in autistic children. J Child Neurol 8 2: 149–153

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Tayama M, Murakawa K, Yoshimoto T, Miyazaki M, Harada M, Kuroda Y (1995) Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 25 1: 1–18

    PubMed  CAS  Google Scholar 

  • Hauser KF, Gurwell JA, Turbek CS (1994) Morphine inhibits purkinje cell survival and dendritic differentiation in organotypic cultures of the mouse cerebellum. Exp Neurol 130 1: 95–105

    PubMed  CAS  Google Scholar 

  • Heilman KM, Watson RT, Valenstein E (1985) Neglect and related disorders. In Heilman KM, Valenstein E (eds) Clinical Neuropsychology 2nd ed, New York: Oxford University Press

    Google Scholar 

  • Heinze HJ, Luck SJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. I. Evidence for early selection. Electroencephalogr Clin Neurophysiol 75 6: 511–527

    PubMed  CAS  Google Scholar 

  • Hetzler BF, Griffin JL (1981) Infantile autism and the temporal lobe of the brain. J Autism Dev Disord 11 3: 317–330

    PubMed  CAS  Google Scholar 

  • Holttum JR, Minshew NJ, Sanders RS, Phillips NE (1992) Magnetic resonance imaging of the posterior fossa in autism. Biol Psychiat 32: 1091–1101

    PubMed  CAS  Google Scholar 

  • Hoon AH Jr, Reiss AL (1992) The mesial-temporal lobe and autism: Case report and review. Dev Med Child Neurol 34 3: 252–259

    PubMed  Google Scholar 

  • Hughes C, Russell J, Robbins TW (1994) Evidence for executive dysfunction in autism. Neuropsychologia 32 4: 477–492

    PubMed  CAS  Google Scholar 

  • Jones V, Prior M (1985) Motor imitation abilities and neurological signs in autistic children. J Autism Dev Disord 15 1: 37–46

    PubMed  CAS  Google Scholar 

  • Kemper TL, Bauman ML (1993) The contribution of neu-ropathologic studies to the understanding of autism. Behav Neurol 11 1: 175–187

    CAS  Google Scholar 

  • Kim S-G, Ugurbil K, Strick PL (1994) Activation of a cerebellar output nucleus during cognitive processing. Science 265 5174: 949–951

    PubMed  CAS  Google Scholar 

  • Kleiman MD, Neff S, Rosman NP (1992) The brain in infantile autism: Are posterior fossa structures abnormal? Neurology 42 4: 753–760

    PubMed  CAS  Google Scholar 

  • Landau WM, Kleffner FR (1957) Syndrome of acquired aphasia with convulsive disorder in children. Neurology 7: 523–530

    PubMed  CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1986) Does the cerebellum contribute to mental operations? Behav Neurosci 100 4: 443–454

    PubMed  CAS  Google Scholar 

  • Leiner HC, Leiner AL, Dow RS (1991) The Human Cere-bro-Cerebellar System: Its Computing, Cogn Lang Skills Behav Brain Res 44 2: 114–128

    Google Scholar 

  • Lovaas 01, Schreibman L, Koegel R, Rehm R (1971) Selective responding by autistic children to multiple sensory input. J Abn Psychol 773: 211–222

    Google Scholar 

  • Mangun GR, Hillyard SA (1987) The spatial allocation of visual attention as indexed by event-related brain potentials. Human Factors 29 2: 195–211

    PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1988) Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroencephalogr Clin Neurophysiol 70 5: 417–428

    PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1990) Allocation of visual attention to spatial locations: Tradeoff functions for event-related brain potentials and detection performance. Percept Psychophysiology 47 6: 532–550

    CAS  Google Scholar 

  • Marchetti B, Scifo R, Batticane N, Scapagnini U (1990) Immunological significance of opioid peptide dysfunction in infantile autism. Brain Dysfunct 3: 346–354

    Google Scholar 

  • Martineau J, Barthélémy C, Jouve J, Muh JP, Lelord G (1992) Monoamines (serotonin and catecholamines) and their derivatives in infantile autism: Age-related changes and drug effects. Dev Med Child Neurol 34 7: 593–603

    PubMed  CAS  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266 5184: 458–461

    PubMed  CAS  Google Scholar 

  • Mountz JM, Tolbert LC, Lill BW, Katholi CR, Liu HG (1995) Functional deficits in autistic disorder: Characterization by technetium-99m-HMPAO and SPECT. J Nucl Med 36 7: 1156–1162

    PubMed  CAS  Google Scholar 

  • Murakami J, Courchesne E, Press G, Yeung-Courchesne R, Hesselink J (1989) Reduced cerebellar hemisphere size and its relationship to vermal hypoplasia in autism. Arch Neurol 46 6: 689–694

    PubMed  CAS  Google Scholar 

  • Newman PP, Reza H (1979) Functional relationships between the hippocampus and the cerebellum: An electrophysiological study of the cat. J Physiol 287: 405–426

    PubMed  CAS  Google Scholar 

  • Novick B, Kurtzberg D, Vaughan H Jr (1979) An electrophysiologic indication of defective information storage in childhood autism. Psychiat Res 01 1: 101–108

    CAS  Google Scholar 

  • Novick B, Vaughan H Jr, Kurtzberg D, Simson R (1980) An electrophysiologic indication of auditory processing defects in autism. Psychiat Res 3 1: 107–114

    CAS  Google Scholar 

  • Ornitz EM (1983) The functional neuroanatomy of infantile autism. Int J Neurosci 191-4: 85–124

    Google Scholar 

  • Osborne JG, Kindy MS, Häuser KF (1991) Expression of proenkephalin mRNA in developing cerebellar cortex of the rat: Expression levels coincide with maturational gradients in purkinje cells. Dev Brain Res 63 1-2: 63–69

    CAS  Google Scholar 

  • Osborne JG, Kindy MS, Spruce BA, Häuser KF (1993) Ontogeny of proenkephalin mRNA and enkephalin peptide expression in the cerebellar cortex of the rat: Spatial and temporal patterns of expression follow maturational gradients in the external granular layer and in purkinje cells. Dev Brain Res 761: 1–12

    CAS  Google Scholar 

  • Ozonoff S, Pennington BF, Rogers SJ (1991) Executive function deficits in high-functioning autistic individuals: Relationship to theory of mind. J Child Psychol Psychiat 32 7: 1081–1105

    PubMed  CAS  Google Scholar 

  • Pandya DN, Karol EA, Heilbronn D (1971) The topographical distribution of interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res 32: 31–43

    PubMed  CAS  Google Scholar 

  • Panksepp J (1979) A neurochemical theory of autism. Trends Neurosci 2: 174–177

    Google Scholar 

  • Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1989) Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1 2: 153–170

    Google Scholar 

  • Piven J, Nehme E, Simon J, Barta P, Pearlson G, Folstein SE (1992) Magnetic resonance imaging in autism: Measurement of the cerebellum, pons, and fourth ventricle. Biol Psychiat 31: 491–504

    PubMed  CAS  Google Scholar 

  • Piven J, Berthier ML, Starkstein SE, Nehme E, Pearlson G, Folstein S (1990) Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am J Psychicat 147 6: 734–739

    CAS  Google Scholar 

  • Piven J, Arndt S, Bailey J, Havercamp S, Andreasen NC, Palmer P (1995) An MRI study of brain size in autism. Am J Psychicat 152 8: 1145–1149

    CAS  Google Scholar 

  • Piven J, Arndt S (1995) The cerebellum and autism. Neurology 45: 398–399

    PubMed  CAS  Google Scholar 

  • Posner MI (1980) Orienting of attention. Quarterly J Exp Psychol 32 1: 3–25

    CAS  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4 7: 1863–1874

    PubMed  CAS  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1987) How do the parietal lobes direct covert attention? Neuropsychologia 25 lA: 135–145

    PubMed  CAS  Google Scholar 

  • Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV, Fox PT, Petersen SE (1994) Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex 4 1: 8–26

    PubMed  CAS  Google Scholar 

  • Raymond G, Bauman M, Kemper T (1989) The hippocampus in autism: Golgi analysis. Ann Neurol 26 3: 483–484

    Google Scholar 

  • Reichelt KL, Knivsberg A-M, Lind G, Nodland M (1991) Probable etiology and possible treatment of childhood autism. Brain Dysfunct 4: 308–319

    Google Scholar 

  • Reichelt KL, Knivsberg A-M, Nodland M, Lind G (1994) Nature and consequences of hyperpeptiduria and bovine casomorphins found in autistic syndromes. Dev Brain Dysfunct 7: 71–85

    Google Scholar 

  • Reiss AL, Feinstein C, Rosenbaum KN (1986) Autism and genetic disorders. Schizophrenia Bull 12 4: 724–738

    CAS  Google Scholar 

  • Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A (1986) Lower purkinje cell counts in the cerebella of four autistic subjects: Initial findings of the UCLA-NSAC autopsy research report. Am J Psy-chiat 143 7: 862–866

    CAS  Google Scholar 

  • Saitoh O, Courchesne E, Egaas B, Lincoln AJ, Schreibman L (1995) Cross-sectional area of the posterior hippocampus in autistic patients with cerebellar and corpus callosum abnormalities. Neurology 45 2: 317–324

    PubMed  CAS  Google Scholar 

  • Schaefer GB, Thompson JN, Bodensteiner JB, McConnell JM, Kimberling WJ, Gay CT, Dutton WD, Hutchings DC, Gray SB (1996) Hypoplasia of the cerebellar vermis in neurogenetic syndromes. Ann Neurol 39 3: 382–385

    PubMed  CAS  Google Scholar 

  • Sears LL, Finn PR, Steinmetz JE (1994) Abnormal classical eye-blink conditioning in autism. J Autism Dev Disord 24 6: 737–751

    PubMed  CAS  Google Scholar 

  • Shattock P, Lowdon G (1991) Proteins, peptides and autism part 2: Implications for the education and care of people with autism. Brain Dysfunct 4: 323–334

    Google Scholar 

  • Townsend J Courchesne E 1994 Parietal damage and narrow “spotlight” spatial attention. J Cogn Neurosci 63: 218–230

    Google Scholar 

  • Townsend J, Courchesne E, Egaas, B (1996a) Slowed orienting of covert visual-spatial attention in autism: Specific deficits associated with cerebellar and parietal abnormality. Dev Psychopathol 8 3: 563–584

    Google Scholar 

  • Townsend J, Singer-Harris N, Courchesne E (1996b) Visual attention abnormalities in autism: Delayed orienting to location. J Int Neuropsychol Soc

    Google Scholar 

  • Vilensky JA, Damasio AR, Maurer RG (1981) Gait disturbances in patients with autistic behavior: A preliminary study. Arch Neurol 38 10: 646–649

    PubMed  CAS  Google Scholar 

  • Wainwright-Sharp JA, Bryson SE (1993) Visual orienting déficits in high-functioning people with autism. J Autism Dev Disord 23 1: 1–13

    PubMed  CAS  Google Scholar 

  • Williams K, Shattock P, Berney T (1991) Proteins, peptides and autism part 1: Urinary protein patterns in autism as revealed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and silver staining. Brain Dysfunct 4: 320–322

    Google Scholar 

  • Williams RS, Hauser SL, Purpura DP, DeLong GR, Swisher CN (1980) Autism and mental retardation: Neuropath-ologic studies performed in four retarded persons with autistic behavior. Arch Neurol 37 12: 749–753

    PubMed  CAS  Google Scholar 

  • Zagon IS, Gibo DM, McLaughlin PJ (1990) Adult and developing human cerebella exhibit different profiles of opioid binding sites. Brain Res 523 1: 62–68

    PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1986a) Opioid antagonist (naltrexone) modulation of cerebellar maldevelopment: Histological and morphometric studies. J Neurosci 6 5: 1424–1432

    PubMed  CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1986b) Opioid antagonist-induced modulation of cerebral and hippocampal development: Histological and morphometric studies. Dev Brain Res 28 2: 233–246

    CAS  Google Scholar 

  • Zagon IS, McLaughlin PJ (1987) Endogenous opioid systems regulate cell proliferation in the developing rat brain. Brain Res 412 1: 68–72

    PubMed  CAS  Google Scholar 

  • Zagon IS, Rhodes RE, McLaughlin PJ (1985) Distribution of enkephalin immunoreactivity in germinative cells of developing rat cerebellum. Science 227 4690: 1049–1051

    PubMed  CAS  Google Scholar 

  • Zilbovicius M, Garreau B, Samson Y, Remy P, Barthélémy C, Syrota A, Lelord G (1995) Delayed maturation of the frontal cortex in childhood autism. Am J Psychiat 152 2: 248–252

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belmonte, M., Carper, R. (1998). Neuroanatomical and neurophysiological clues to the nature of autism. In: Neuroimaging in child neuropsychiatric disorders. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95848-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95848-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-95850-2

  • Online ISBN: 978-3-642-95848-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics