Skip to main content

Advertisement

Log in

Effects of Injection of Carbon Nanotubes on EEG and Results of a Behavioral Test in Rats

  • Published:
Neurophysiology Aims and scope

We examined the biocompatibility of carbon nanotubes (CNTs) injected i.p. into rats (1 mg/kg body mass) by recording EEG from the frontal and occipital cortex and performing the water maze router test before and after such injection. For EEG, the energy and average power spectral density of wavelet coefficients in the β, α, and θ bands were considered the features. In the water maze router experiment, the distance, time, and speed of rats were investigated as behavioral factors. Comparison of EEG signals before and after injection showed that introduction of CNTs exerted no significant effect on electrophysiological brain indices. A comparison of behavioral factors before and after injection, however, showed that injections of CNTs increased the pacing distance and time to find the desired platform and decreased somewhat the speed in the water maze router experiment. A possible reason of this phenomenon is the possible influence of CNTs on ion fluxes in brain neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nunes, K. Al-Jamal, T. Nakajima, et al., “Application of carbon nanotubes in neurology: clinical perspectives and toxicological risks,” Arch. Toxicol., 86, No. 7, 1009- 1020 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. N. A. Kotov, J. O. Winter, I. P. Clements, et al., “Nanomaterials for neural interfaces,” Adv. Mater., 21, No. 40, 3970-4004 (2009).

    Article  CAS  Google Scholar 

  3. A. Sucapane, G. Cellot, M. Prato, et al., “Interactions between cultured neurons and carbon nanotubes: a nanoneuroscience vignette,” J. Nanoneurosci., 1, No. 1, 10 (2009).

  4. A. Al Faraj, F. Fauvelle, N. Luciani, et al., “In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques,” Int. J. Nanomed., 6, 351 (2011).

    Article  CAS  Google Scholar 

  5. Y. Liu and H. Wang, “Nanomedicine: Nanotechnology tackles tumours,” Nat. Nanotechnol., 2, No. 1, 20-21 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. P. Wick, P. Manser, L. K. Limbach, et al., “The degree and kind of agglomeration affect carbon nanotube cytotoxicity,” Toxicol. Lett., 168, No. 2, 121-131 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. P. M. Raja, J. Connolley, G. P. Ganesan, et al., “Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells,” Toxicol. Lett., 169, No. 1, 51 (2007).

  8. M. P. Mattson, R. C. Haddon, and A. M. Rao, “Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth,” J. Mol. Neurosci., 14, No. 3, 175-182 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. K. Matsumoto, C. Sato, Y. Naka, et al., “Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes,” J. Biosci. Bioeng., 103, No. 3, 216-220 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. V. Lovat, D. Pantarotto, L. Lagostena, et al., “Carbon nanotube substrates boost neuronal electrical signaling,” Nano Lett., 5, No. 6, 1107-1110 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. M. K. Gheith, V. A. Sinani, J. P. Wicksted, et al., “Singlewalled carbon nanotube polyelectrolyte multilayers and freestanding films as a biocompatible platform for neuroprosthetic implants,” Adv. Mater., 17, No. 22, 2663-2670 (2005).

    Article  CAS  Google Scholar 

  12. I. Yoon, K. Hamaguchi, I. V. Borzenets, et al., “Intracellular neural recording with pure carbon nanotube probes,” PLoS One, 8, No. 6, e65715 (2013).

  13. S. K. Smart, A. I. Cassady, G. Q. Lu, and D. J. Martin, “The biocompatibility of carbon nanotubes,” Carbon, 44, No. 6, 1034-1047 (2006).

  14. A. M. Schrand, L. Dai, J. J. Schlager, et al., “Differential biocompatibility of carbon nanotubes and nanodiamonds,” Diamond Relat. Mater., 16, No. 12, 2118-2123 (2007).

    Article  CAS  Google Scholar 

  15. L. Lacerda, H. Ali-Boucetta, M. A. Herrero, et al., “Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes,” Nanomedicine (London), 3, 149-161, doi: 10.2217/17435889.3.2.149 (April 2008).

  16. C. A. Poland, R. Duffin, I. Kinloch, et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nat. Nanotechnol., 3, No. 7, 423-428 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. J. Muller, F. Huaux, N. Moreau, et al., “Respiratory toxicity of multi-wall carbon nanotubes,” Toxicol. Appl. Pharmacol., 207, No. 3, 221-231 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. X. Deng, F. Wu, Z. Liu, et al., “The splenic toxicity of water soluble multi-walled carbon nanotubes in mice,” Carbon, 47, No. 6, 1421-1428 (2009).

  19. L. M. Jakubek, S. Marangoudakis, J. Raingo, et al., “The inhibition of neuronal calcium ion channels by trace levels of yttrium released from carbon nanotubes,” Biomaterials, 30, No. 31, 6351-6357 (2009).

  20. P. Goel, H. Liu, D. Brown, and A. Datta, “On the use of spiking neural network for EEG classification,” Int. J. Knowl.-Based Intell. Eng. Syst., 12, No. 4, 295-304 (2008).

    Google Scholar 

  21. K. Wu, A. Sajad, S. Omar, and W. McKay, “The effect of high frequency radio waves on human brain activity: an EEG study,” Univ. Toronto J. Undergrad. Life Sci., 3, No. 1, 50-52 (2009).

    Google Scholar 

  22. S. Ivani, I. Karimi, and S. R. F. Tabatabaei, “Biosafety of multiwalled carbon nanotube in mice: a behavioral toxicological approach,” J. Toxicol. Sci., 37, No. 6, 1191-1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. M K. Kiymik, M. Akin, and A. Subasi, “Automatic recognition of alertness level by using wavelet transform and artificial neural network,” J. Neurosci. Methods, 139, No. 2, 231-240 (2004).

    Article  PubMed  Google Scholar 

  24. W. Ting, Y. Guo-zheng, Y. Bang-hua, and S. Hong, “EEG feature extraction based on wavelet packet decomposition for brain computer interface,” Measurement, 41, No. 6, 618-625 (2008).

  25. P. Stoica and R. L. Moses, Introduction to Spectral Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1997).

  26. D. Zhao, D. Alizadeh, L. Zhang, et al., “Carbon nanotubes enhance CpG uptake and potentiate antiglioma immunity,” Clin. Cancer Res., 17, No. 4, 771-782 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. E. Jan and N. A. Kotov, “Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite,” Nano Lett., 7, No. 5, 1123-1128 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. A. V. Liopo, M. P. Stewart, J. Hudson, et al., “Biocompatibility of native and functionalized singlewalled carbon nanotubes for neuronal interface,” J. Nanosci. Nanotechnol., 6, No. 5, 1365-1374 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. H. J. Lee, J. Park, O. J. Yoon, et al., “Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model,” Nat. Nanotechnol., 6, No. 2, 121-125 (2011).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. A. Takagi, A. Hirose, T. Nishimura, et al., “Induction of mesothelioma in p53+/-mouse by intraperitoneal application of multi-wall carbon nanotube,” J. Toxicol. Sci., 33, No. 1, 105-116 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. E. B. Malarkey, K. A. Fisher, E. Bekyarova, et al., “Conductive single-walled carbon nanotube substrates modulate neuronal growth,” Nano Lett., 9, No. 1, 264- 268 (2008).

    Article  Google Scholar 

  32. C.W. Lam, J. T. James, R. McCluskey, et al., “A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks,” CRC Crit. Rev. Toxicol., 36, No. 3, 189-217 (2006).

    Article  CAS  Google Scholar 

  33. Y. Ni, H. Hu, E. B. Malarkey, et al., “Chemically functionalized water soluble single-walled carbon nanotubes modulate neurite outgrowth,” J. Nanosci. Nanotechnol., 5, No. 10, 1707-1712 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. B. Kateb, M. Van Handel, L. Zhang, et al., “Internalization of MWCNTs by microglia: possible application in immunotherapy of brain tumors,” NeuroImage, 37, S9-S17 (2007).

    Article  PubMed  Google Scholar 

  35. L. Dong, K. L. Joseph, C. M. Witkowski, and M. M. Craig, “Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants,” Nanotechnology, 19, No. 25, 255702 (2008).

  36. L. Dong, C. M. Witkowski, M. M. Craig, et al., “Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells,” Nanoscale Res. Lett., 4, No. 12, 1517-1523 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. H. Xu, J. Bai, J. Meng, et al., “Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells,” Nanotechnology, 20, No. 28, 285102 (2009).

  38. C Gaillard, G. Cellot, S. Li, et al., “Carbon nanotubes carrying cell‐adhesion peptides do not interfere with neuronal functionality,” Adv. Mater., 21, No. 28, 2903- 2908 (2009).

    Article  CAS  Google Scholar 

  39. G. Bardi, P. Tognini, G. Ciofani, et al., “Pluronic-coated carbon nanotubes do not induce degeneration of cortical neurons in vivo and in vitro,” Nanomed.: Nanotechnol., Biol. Med., 5, No. 1, 96 (2009).

  40. K. H. Park, M. Chhowalla, Z. Iqbal, and F. Sesti, “Single-walled carbon nanotubes are a new class of ion channel blockers,” J. Biol. Chem., 278, No. 50, 50212- 50216 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. M. VanHandel, D. Alizadeh, L. Zhang, et al., “Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model,” J. Neuroimmunol., 208, No. 1, 3-9 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Azimirad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimirad, V., Hosseinpour, M., Shahabi, P. et al. Effects of Injection of Carbon Nanotubes on EEG and Results of a Behavioral Test in Rats. Neurophysiology 47, 198–204 (2015). https://doi.org/10.1007/s11062-015-9521-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9521-2

Keywords

Navigation