Skip to main content

Advertisement

Log in

Potassium Channels and Signal Transduction Pathways in Neurons

  • Communications of the VI Congress of the Ukrainian Neuroscience Society Dedicated to the 90th Anniversary of Academician P. G. Kostyuk (Kyiv, June 4 – 8, 2014)
  • Published:
Neurophysiology Aims and scope

Potassium (K+) channels constitute the most diverse class of ion channels; these channels are especially important for regulation of the neuronal excitability and provide signaling activity in a variety of ways. These channels are major determinants of the membrane excitability, influencing the resting potential of the membranes, waveforms and frequencies of action potentials, and thresholds of excitation. Voltagegated K+ channels do not exist as independent units merely responding to changes in the transmembrane potential; these are macromolecular complexes able to integrate a great variety of cellular signals that provide fine tuning of channel activities. Compounds that change K+ channel properties are commonly employed as therapeutic agents in a number of pathologies, in particular arrhythmias, cancer, and neurological disorders (psychoses, epilepsy, stroke, and Alzheimer’s disease).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. G. Kostyuk, Plasticity in Nerve Cell Function, Clarendon Press, Oxford Univ. Press, Oxford (1998).

    Google Scholar 

  2. P. G. Kostyuk, Calcium Ions in Nerve Cell Function, Oxford Univ. Press, Oxford (1992).

    Google Scholar 

  3. P. G. Kostyuk and E. A. Lukyanetz, “Mechanisms of antagonistic action of internal Ca2+ on serotonin-induced potentiation of Ca2+ current in Helix neurones,” Pflügers Arch., 424, 73-83 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. D. Debanne, ”Plasticity of neuronal excitability in vivo,” J. Physiol., 587, No. 13, 3057-3058 (2009).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. N. C. Spitzer, “New dimensions of neuronal plasticity,” Nat. Neurosci., 2, No. 6, 489-491 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. R. Narayanan and D. Johnston, “The ascent of channels with memory,” Neuron, 60, No. 3, 735-738.

  7. F. Bezanilla, “Ion channels: from conductance to structure,” Neuron, 60, No. 3, 456-468 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. D. A. Doyle, J. M. Carabal, R. A. Pfuetzner, et al., “The structure of the potassium channel: molecular basis of K+ conduction and selectivity,” Science, 280, 69-77 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. S. Choe, “Potassium channel structures,” Nat. Rev. Neurosci., 3, No. 2, 115-121 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. R. MacKinnon, “Potassium channels,” FEBS Lett., 555, No. 3, 62-65 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. W. A. Coetzee, Y. Amarillo, J. Chiu, et al., “Molecular diversity of K+ channels,” Ann. New York Acad. Sci., 868, No. 5, 233-285 (1999).

    Article  CAS  Google Scholar 

  12. D. N. Papazian, “Potassium channels: some assembly required,” Neuron, 23, 7-10 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. I. S. Magura and I. Z. Zamekhovsky, “Repetitive firing in molluscan giant neurons,” J. Exp. Biol., 59, No. 3, 767-780 (1973).

    Google Scholar 

  14. J. N. MacLean, Y. Zhang, B. R. Johnson, and R. M. Harris-Warrick, “Activity-independent homeostasis in rhythmically active neurons,” Neuron, 37, No. 6, 109-120 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. J. R. Martens, K. O’Connell, and M. Tamkun, “Targeting of ion channels to membrane microdomains: localization of Kv channels to lipid rafts,” Trends Pharmacol. Sci., 25, 16-21 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. D. L. Black, “Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology,” Cell, 103, 367-370 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Li, S. Y. Um, and T. V. McDonald, “Voltage-gated potassium channels: regulation by accessory subunits,” Neuroscientist, 12, No. 1, 199-209 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. L. L. Isom, K. S. De Jongh, and W. A. Catterall, “Auxilary subunits of voltage-gated ion channels,” Neuron, 12, No. 3, 1183-1194 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. G. C. L. Bett and R. L. Rasmusson, “Modification of K channel–drug interactions by ancillary subunits,” J. Physiol., 586, No. 4, 929-950 (2008).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. D. Johnston, D. A. Hoffman, and J. C. Magee, “Dendritic potassium channels in hippocampal pyramidal neurons,” J. Physiol., 525, No. 1, 75-81 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. P. J. Spruston, “Pyramidal neurons: dendritic structure and synaptic integration,” Nat. Rev. Neurosci., 9, 206-221 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. T. Baukrowits and G. Yellen, “Modulation of K current by frequency and external [K]: A tale of two inactivation mechanisms,” Neuron, 15, 951-960 (1995).

    Article  Google Scholar 

  23. K. G. Klemic, C. C. Shieh, G. E. Kirsch, and S. W. Jones, “Inactivation of Kv2.1 potassium channels,” Biophys. J., 74, 1779-1789 (1998).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. K.G. Klemic, G. E. Kirsch, and S. W. Jones, “U-type inactivation of Kv3.1 and Shaker potassium chаnnels,” Biophys. J., 81, 814-826 (2000)

    Article  Google Scholar 

  25. I. S. Magura, V. V. Kucher, and N. Y. Boiko, “Voltage-operated potassium channels and mechanisms controlling their activity,” Neurophysiology, 36, 285-292 (2004).

    Article  CAS  Google Scholar 

  26. P. G. Patil, D. L. Brody, and D. T. Yue, “Preferential closed-state inactivation of neuronal calcium channels,” Neuron, 20, No. 4, 1027–1038 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. I. S. Magura, O. A. Krishtal, and A. G. Valeyev, “Behaviour of delayed current under long duration voltage clamp in snail neurons,” Compar. Biochem. Physiol., Ser. A, 40, 715-722 (1971).

    Article  Google Scholar 

  28. R. W. Aldrich, “Inactivation of voltage-gated delayed potassium current in molluscan neurons: a kinetic model,” Biophys. J., 36, No. 2, 519-532 (1981).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. M. Ma and J. Koester, “The role of K currents in frequency-dependent spike broadening in Aplysia R20 neurons: A dynamic-clamp analysis,” J. Neurosci., 16, 4089-4102 (1996).

    CAS  PubMed  Google Scholar 

  30. L. Heginbotham and R. MacKinnon, “The aromatic binding site for tetraethylammonium ion on potassium channels“, Neuron., 8, No. 3, 483-491 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. J. Thompson and T. Begenisich, “External TEA block of Shaker K+ channels is coupled to the movement of K ions within the selectivity filter,” J. Gen. Physiol., 122: 239-246 (2003).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. R. MacKinnon and G. Yellen, “Mutation affecting TEA blockade and ion permeation in voltage-activated K channels,” Science, 250, 276-279 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. S. Crouzy, S. Berneghe, and B. Roux, “Extracelluar blockade of K channels by TEA: results from molecular dynamics simulations of the KcsA channel,” J. Gen. Physiol., 18, No. 1, 207-217 (2001).

    Article  Google Scholar 

  34. D. Immke and S. J. Korn, “Ion-ion interaction at the selectivity filter. Evidence from K+-dependent modulation of tetraethylammonium efficacy in Kv2.1 potassium channels,” J. Gen. Physiol., 115, No. 3, 509-518 (2000).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. B. S. Khakh and H. A. Lester, “Dynamic selectivity filters in ion channels”, Neuron, 23, No. 4, 653–658 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is dedicated to the 90th anniversary of the outstanding Ukrainian physiologist Academician Platon Kostyuk, who devoted himself to ion channel research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magura, I.S., Bogdanova, N.A. & Dolgaya, E.V. Potassium Channels and Signal Transduction Pathways in Neurons. Neurophysiology 47, 71–76 (2015). https://doi.org/10.1007/s11062-015-9499-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9499-9

Keywords

Navigation