Skip to main content
Log in

Effects of Passive Perception of Isoamyl Acetate Smell on the Resting-State EGG in Humans

  • Published:
Neurophysiology Aims and scope

We analyzed changes in the spectral powers of different EEG frequency ranges and levels of coherence of the respective oscillations under conditions of passive perception of the smell of isoamyl acetate (pear essence) by humans in the resting state. Depending on a subjective estimate of the smell of isoamyl acetate, its presence per se caused increases in the mean levels of coherence of high-frequency a-subrange oscillations in all tested persons, which can be indicative of intensification of internal mental activity and increase in readiness to react. In the tested persons estimating the used olfactory stimulus as negative, the coherence of α2- and β1-oscillations in the central cortical areas and in the frontal and occipital zones decreased. In the tested persons with the positive subjective estimate of the isoamyl acetate smell, the coherence increased also in the a1-subrange during the action of this olfactory stimulus. Therefore, we obtained indications that activation of the olfactory analyzer is capable of changing the functioning of neuronal networks of the human brain in the resting state, and the pattern of these alterations partly depends on a subjective hedonic estimate of one smell or another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Cherninskii, I. G. Zima, N. Ye. Makarchouk, et al., “Modifications of EEG related to directed perception and analysis of olfactory information in humans,” Neurophysiology, 41, No. 1, 63-70 (2009).

    Article  Google Scholar 

  2. S. S. Schiffman and C. A. Garlin, “Clinical physiology of taste and smell,” Ann. Rev. Nutrit., 13, 405-436 (1993).

    Article  CAS  Google Scholar 

  3. A. D. Nguyen, M. E. Shenton, and J. J. Levitt, “Olfactory dysfunction in schizophrenia: a review of neuroanatomy and psychophysiological measurements,” Harvey Rev. Psychiat., 18, No. 5, 279-292 (2010).

    Article  Google Scholar 

  4. B. Atanasova, J. Graux, W. El Hage, et al., “Olfaction: a potential cognitive marker of psychiatric disorders,” Neurosci. Biobehav. Rev., 32, No. 7, 1315-1325 (2008).

    Article  PubMed  Google Scholar 

  5. J. P. Kline, G. I. Schwartz, Z. V. Dikman, et al., “Electroencephalographic registration of low concentrations of isoamyl acetate,” Conscious. Cognit., 9, No. 1, 50-65 (2000).

    Article  CAS  Google Scholar 

  6. L. Cui and W. J. Evans, “Olfactory event-related potentials to isoamyl acetate in congenital anosmia,” Electroencephalogr. Clin. Neurophysiol., 102, No. 4, 303-306 (1998).

    Article  Google Scholar 

  7. V. T. Troitskaia and O. S. Gladysheva, “Smell reception and neurogenesis in the olfactory epithelium,” Neurophysiology, 22, No. 4, 500-506 (1990).

    CAS  PubMed  Google Scholar 

  8. K. Christoff, A. M. Gordon, J. Smallwood, et al., “Experience sampling during fMRI reveals default network and executive system contributions to mind wandering,” Proc. Natl. Acad. Sci. USA, 106, No. 21, 8719-8724 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. D. A. Fair, A. L. Cohen, N. U. Osenbach, et al., “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. USA, 105, No. 10, 4028-4032 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. N. E. Sviderskaya, T. A. Korol’kova, and N. O. Nikolaeva, “Spatial-frequency structure of cortical processes in different intellectual activities in humans,” Fiziol. Cheloveka, 16, No. 5, 5-12 (1990).

    Google Scholar 

  11. A. P. Burgess and J. H. Gruzelier, “Localization of word and face recognition memory using topographical EEG,” Psychophysiology, 34, 7-16 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. D. E. Everhart, “Low alpha power (7.5-9.5 Hz) changes during positive and negative affective learning,” Cognit., Affect., Behav. Neurosci., 3, No. 1, 39-45 (2003).

    Article  Google Scholar 

  13. N. E. Sviderskaya and T. A. Korol’kova, “Spatial organization of electrical processes in the brain: problems and solutions,” Zh. Vyssh. Nerv. Deyat., 47, No. 5, 792-811 (1997).

    Google Scholar 

  14. A. K. Engel and P. Fries, “Beta-band oscillationssignalling the status quo?” Curr. Opin. Neurobiol., 20, No. 2, 156-165 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. M. Kukleta, M. Brázdil, R. Roman, et al., “Cognitive network interactions and beta-2 coherence in processing non-target stimuli in visual oddball task,” Physiol. Res., 58, 139-148 (2009).

    CAS  PubMed  Google Scholar 

  16. M. D. Greicius, B. Krasnow, A. L. Reiss, et al., “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proc. Natl. Acad. Sci. USA, 100, 253-258 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. M. F. Mason, M. I. Norton, J. D. Van Horn, et al., “Wandering minds: The default network and stimulusindependent thought,” Science, 315, No. 5810, 393-395 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. R. S. Herz, “A naturalistic analysis of autobiographical memories triggered by olfactory visual and auditory stimuli,” Chem. Senses, 29, No. 3, 217-224 (2004).

    Article  PubMed  Google Scholar 

  19. P. Sauseng, W. Klimesch, M. Schabus, and M. Doppelmayr, “Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory,” Int. J. Psychophysiol., 57, 97-103 (2005).

    Article  PubMed  Google Scholar 

  20. G. G. Knyazev, J. Y. Slobodskoj-Plusnin, A. V. Bocharov, et al., “The default mode network and EEG alpha oscillations: An independent component analysis,” Brain Res., 1402, 67-79 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. D. E. Everhart, “Low alpha power (7.5-9.5 Hz) changes during positive and negative affective learning,” Cognit., Affect. Behav. Neurosci., 3, No. 1, 39-45 (2003).

    Article  Google Scholar 

  22. F. Travis, “Comparison of coherence, amplitude, and eLORETA patterns during transcendental meditation and TM-sidhi practice,” Int. J. Psychophysiol., 81, 198-202 (2011).

    Article  PubMed  Google Scholar 

  23. A. Wrobel, “Beta activity: a carrier for visual attention,” Acta Neurobiol. Exp., 60, No. 2, 247-260 (2000).

    CAS  Google Scholar 

  24. I. Savic and H. Berglund, “Passive perception of odors and semantic circuits,” Human Brain Mapp., 21, No. 4, 271-278 (2004).

    Article  Google Scholar 

  25. L. Theresa and A. White, “Second look at the structure of human olfactory memory,” Ann. N.Y. Acad. Sci., 1170, 338-342 (2009).

    Article  Google Scholar 

  26. T. Bitter, H. Gudziol, H. P. Burmeister, et al., “Anosmia leads to a loss of gray matter in cortical brain areas,” Chem. Senses, 35, No. 5, 407-415 (2010).

    Article  PubMed  Google Scholar 

  27. O. Sporns, Networks of the Brain, The MIT Press, Cambridge, Massachusetts (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ye. Makarchouk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zima, I.G., Makarchouk, N.Y., Kryzhanovskii, S.A. et al. Effects of Passive Perception of Isoamyl Acetate Smell on the Resting-State EGG in Humans. Neurophysiology 46, 486–493 (2014). https://doi.org/10.1007/s11062-015-9478-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9478-1

Keywords

Navigation