Skip to main content

Advertisement

Log in

Epigenetics: Stress and Behavior

  • Published:
Neurophysiology Aims and scope

Abstract

Possible mechanisms of the effects exerted by stress (in the broad sense of the term) on the human genome and manifested in modifications of behavior are described in this review. Behavioral epigenetics opens new prospects for interpretation of the evolution of behavior induced by changes in living conditions. Epigenetic labels (imprints, methylation of DNA and/or covalent modifications of histones) appear under the influence of actual stress environmental influences, including social interactions. The appearance of such labels is not random; it is determined contextually and leads to behavioral disorders that can be transmitted through future generations. Stress phenomena of modern life, which are psychosocial in their nature, realize their effects via quite definite biological mechanisms. Epigenetic modifications are the most probable candidates for the role of relatively fast genetic mechanisms determining changes in behavior and mental health of great contingents of individuals living under contemporary conditions of ever-increasing stress loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Faraone, M. T. Tsuang, and D. W. Tsuang, Genetics of Mental Disorders: A Guide for Students, Clinicians, and Researchers, Guilford Press, New York (1999).

    Google Scholar 

  2. R. Plomin, J. C. DeFries, G. E. McLean, and P. McGuffin, Behavioral Genetics, Worth Publ., New York (2008).

    Google Scholar 

  3. I. V. Ravich-Shcherbo, T. M. Malyutina, and Ye. L. Grigorenko, Psychogenetics, Aspekt-Press, Moscow (2002).

    Google Scholar 

  4. J. W. Gilger, “Contribution and promise of human behavioral genetics,” Human Biol., 72, No. 1, 229-255 (2000).

    PubMed  CAS  Google Scholar 

  5. S. Torgersen, “Behavioral genetics of personality,” Current Psychiat. Rep., 7, No. 1, 51-56 (2005).

    Article  Google Scholar 

  6. G. L. Engel, “The need for a new medical model: A challenge for biomedicine,” Science, 196, 129-136 (1997).

    Article  Google Scholar 

  7. D. Pilgrim, “The biopsychosocial model in angloamerican psychiatry: Past, present and future,” J. Ment. Health, 11, No. 6, 585-594 (2002).

    Article  Google Scholar 

  8. T. E. Moffitt, “Genetic and environmental influences in antisocial behaviors: evidence from behavioral-genetic research,” Adv. Genet., 55, 41-104 (2005).

    Article  PubMed  Google Scholar 

  9. Behavioral Genetics in the Postgenomic Era / R. Plomin, J. C. DeFries, I. W. Craig, and P. McGuffin (Eds.), Am. Psychol. Assoc., Washington, DC (2002).

  10. Improving Health Systems and Services for Mental Health,World Health Organization (2009).

  11. BMA Board of Science. Child and Adolescent Mental Health. A Guide for Healthcare Professionals, Br. Med. Assoc., London (2006).

  12. S. Collishaw, B. Maughan, R. Goodman, et al., “Time trends in adolescent mental health,” J. Child Psychol. Psychiat., 45, No. 8, 1350-1362 (2004).

    Article  PubMed  Google Scholar 

  13. M. D. Golubovskii, Century of Genetics: Evolution of Ideas and Concepts, Borei Art, St. Petersburg (2000).

    Google Scholar 

  14. Z. Hochberg, R. Feil, M. Constancia, et al., “Child health, developmental plasticity, and epigenetic programming,” Endocrine Rev., 32, No. 2, 159-224 (2010).

    Article  CAS  Google Scholar 

  15. A. M. Vaiserman, V. P. Voitenko, and L. V. Mekhova, “Epigenetic epidemiology of age-dependent diseases,” Ontogenez, 42, No. 1, 1-21 (2011).

    Google Scholar 

  16. Е. Jablonka and M. J. Lamb, “The inheritance of acquired epigenetic variations,” J. Theor. Biol., 139, No. 1, 69-83 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. O. E. Landman, “The inheritance of acquired characteristics,” Annu. Rev. Genet., 25, 1-20 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. E. J. Richards, “Inherited epigenetic variation – revisiting soft inheritance,” Nat. Rev. Genet., 7, 395-400 (2006).

    Article  PubMed  CAS  Google Scholar 

  19. D. L. Grodnitskii, “Epigenetic theory of evolution as a probable base for the new evolutionary synthesis,” Zh. Obshch. Biol., 62, No. 2, 99-109 (2001).

    PubMed  CAS  Google Scholar 

  20. M. J. Meaney, M. Szyf, and J. R. Seckl, “Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health,” Trends Mol. Med., 13, No. 7, 269-277 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. J. M. Levenson, T. L. Roth, F. D. Lubin, et al., “Evidence that DNA (cytosine-5)methytransferase regulates synaptic plasticity in hippocampus,” J. Biol. Chem., 281, 15763-15773 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. C. A. Miller and J. D. Sweat, “Covalent modification of DNA regulates memory function,” Neuron, 53, 857-869 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. M. Szyf, “Epigenetic control of gene expression. The early life environment and the epigenome,” Biochim. Biophys. Acta (BBA), 1790, No. 9, 878-885 (2009).

    Article  CAS  Google Scholar 

  24. M. Fagiolini, C. L. Jensen, and F. A. Champagne, “Epigenetic influences on brain development and plasticity,” Curr. Opin. Neurobiol., 19, No. 2, 207-212 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. M. Szyf, “The dynamic epigenome and its implications in toxicology,” Toxicol. Sci., 100, 7-23 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. P. D. Gluckman and M. A. Hanson, “Living in the past: evolution, development, and patterns of disease,” Science, 305, 1733-1736 (2004).

    Article  PubMed  CAS  Google Scholar 

  27. B. F. Vanyushin, S. G. Tkacheva, and A. N. Belozersky, “Rare bases in animal DNA,” Nature, 225, 948-949 (1970).

    Article  PubMed  CAS  Google Scholar 

  28. B. F. Vanyushin, “Methylation of DNA in cells of different organisms,” Usp. Sovrem. Biol., 77, No. 2, 68-90 (1974).

    CAS  Google Scholar 

  29. B. F. Vanyushin, N. A. Tushmalova, and L. V. Gus’kova, “Methylation of DNA in the brain as an index of involvement of the genome in mechanisms of individually acquired memory,” Dokl. Akad. Nauk. SSSR, 219, 742-744 (1974).

    CAS  Google Scholar 

  30. B. F. Vanyushin and Ye. B. Romanenko, “Changes of methylation of DNA in rats in ontogenesis and under the influence of hydrocortisone,” Biokhimiya, 44, 78-85 (1979).

    CAS  Google Scholar 

  31. B. F. Vanyushin, “Methylation of DNA and epigenetics,” Genetika, 42, No. 9, 1186-1199 (2006).

    Google Scholar 

  32. A. V. Prokhorchouk and A. S. Ruzov, “Methylation of the genome and its role in the functioning of an eukaryotic organism,” Genetika. 36, No. 11, 1475-1486 (2000).

    Google Scholar 

  33. R. Kumar and E. B. Thompson, “Gene regulation by the glucocorticoid receptor: structure/function relationship,” J. Steroid Biochem. Mol. Biol., 94, No. 5, 383-394 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. M. Gehring, W. Reik, and S. Henikoff, “DNA demethylation by DNA repair,” Trends Genet., 25, 82-90 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. B. E. Bernstein, A. Meissner, and E. S. Lander, “The mammalian epigenome,” Cell, 128, 669-681 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. M. Szyf, “DNA methylation, the early-life social environment and behavioral disorders,” J. Neurodev. Disord., 3, No. 3, 238-249 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  37. W. Fillipowicz, L. Jaskiewich, F. A. Kolb, and R. S. Pillai, “Post-transcriptional gene silencing by siRNAs and miRNAs,” Curr. Opin. Struct. Biol., 15, 331-341 (2005).

    Article  CAS  Google Scholar 

  38. M. Tijsterman, R. F. Ketting, and R. H. Plasterk, “The genetics of DNA silencing,” Annu. Rev. Genet., 36, 489518 (2002).

    Article  CAS  Google Scholar 

  39. A. Bilang-Bleuel, S. Ulbricht, Y. Chandramohan, et al., “Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: involvement in a glucocorticoid receptor-dependent behavioral response,” Eur. J. Neurosci., 22, No. 7, 16911700 (2005).

    Article  Google Scholar 

  40. C. Tsigos and G. P. Chrousos, “Hypothalamic-pituitaryadrenal axis, neuroendocrine factors and stress,” J. Psychosom. Res., 53, No. 4, 865-871 (2002).

    Article  PubMed  Google Scholar 

  41. E. Charmandari, C. Tsigos, and G. P. Chrousos, “Endocrinology of the stress response,” Annu. Rev. Physiol., 67, 259-284 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. G. Aguilera, A. Kiss, Y. Liu, and A. Kamitakahara, “Negative regulation of corticotropin releasing factor expression and limitation of stress response,” Stress, 10, No. 2, 153-161 (2007).

    Article  PubMed  CAS  Google Scholar 

  43. R. Hayashi, H. Wada, K. Ito, et al., “Effects of glucocorticoids on gene transcription,” Eur. J. Pharmacol., 500, Nos. 1/3, 51-62 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. M. E. Bauer, “Stress, glucocorticoids and ageing of the immune system,” Stress, 8, No. 1, 69-83 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. C. B. Nemeroff and W. W. Vale, “The neurobiology of depression: Inroads to treatment and new drugs discovery,” J. Clin. Psychiat., 66, Suppl. 6, 5-13 (2005).

    CAS  Google Scholar 

  46. K. Dedovic, A. Duchesne, J. Andrews, et al., “The brain and the stress axis: The neural correlates of cortisol regulation in response to stress,” NeuroImage, 47, 864871 (2009).

    Article  CAS  Google Scholar 

  47. J. S. Snyder, A. Soumier, M. Brewer, et al., “Adult hippocampal neurogenesis buffers stress responses and depressive behavior,” Nature, 476, 458-461 (2011).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. J. R. Seckl, “11β-hydroxysteroid dehydrogenase in the brain: a novel regulator of glucocorticoid action?” Front. Neuroendocrinol., 18, 49-99 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. D. Wasserman, Depression. The Facts, Oxford Univ. Press, Oxford (2006).

    Google Scholar 

  50. L. Reba-Harrelson, A. Von Holle, R. M. Hamer, et al., “Patterns of maternal feeding and child eating associated with eating disorders in the Norwegian mother and child cohort study (MoBa),” Eat Behav., 11, No. 1, 54-61 (2010).

    Article  PubMed  Google Scholar 

  51. S. A. Swanson, S. J. Crow, D. Le Grange, et al., “Prevalence and correlates of eating disorders in adolescents. Results from the national comorbidity survey replication adolescent supplement,” Arch. Gen. Psychiat., 68, No. 7, 714-723 (2011).

    Article  PubMed  Google Scholar 

  52. C. N. Hales and D. J. P. Barker, “The thrifty phenotype hypothesis,” Br. Med. Bull., 60, 5-20 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. K. A. Halmi, “Anorexia nervosa: An increasing problem in children and adolescents,” Dialogues Clin. Neurosci., 11, No. 1, 100-103 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. V. A. Rozanov, Zh. K. Yemyasheva, and B, V, Biron, “Effect of a trauma in childhood in accumulation of stress events and formation of suicidal trends in the course of life,” Ukr. Med. Chasopys, 6, No. 86, 94-98 (2011).

    Google Scholar 

  55. S. J. Lupien, B. S. McEwen, M. R. Gunnar, et al., “Effects of stress throughout the lifespan on the brain, behavior and cognition,” Nature Rev. Neurosci., 10, No. 6, 434-445 (2009).

    Article  CAS  Google Scholar 

  56. L. A. M. Welberg, J. R. Seckl, and M. C. Holmes, “Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotropin-releasing hormone: Possible implication for behavior,” Neuroscience, 104, No. 1, 71-79 (2001).

    Article  PubMed  CAS  Google Scholar 

  57. J. I. Koenig, G. I. Elmer, P. D. Shepard, et al., “Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: Potential relevance to schizophrenia,” Behav. Brain Res., 156, No. 2, 251-261 (2005).

    Article  PubMed  Google Scholar 

  58. M. Weinstock, “The potential influence of maternal stress hormones on development and mental health of the offspring,” Brain Behav. Immunol., 19, No. 4, 296308 (2005).

    Article  CAS  Google Scholar 

  59. N. S. Levitt, “Dexamethasone in the last week of pregnancy attenuates hippocampal glucocorticoid receptor gene expression and elevates blood pressure in the adult offspring of the rat,” Neuroendocrinology, 64, 412-418 (1996).

    Article  PubMed  CAS  Google Scholar 

  60. P. R. Lee, D. L. Brady, R. A. Shapiro, et al., “Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin,” Brain Res., 1156, 152-167 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. A. K. Kinnunen, J. I. Koenig, and G. Bilbe, “Repeated variable prenatal stress alters pre- and postsynaptic gene expression in the rat frontal pole,” J. Neurochem., 86, No. 3, 736-748 (2003).

    Article  PubMed  CAS  Google Scholar 

  62. A. G. Reznikov, N. D. Nosenko, L. V. Tarasenko, et al., “Early and long-term neuroendocrine effects of prenatal stress in male and female rats,” Neurosci. Behav. Physiol., 31, No. 1, 1-5 (2001).

    Article  PubMed  CAS  Google Scholar 

  63. A. G. Reznikov, V. P. Pishak, N. D. Nosenko, et al., Prenatal Stress and Neuroendocrinal Pathologies, Medakademiya, Chernovtsy (2004).

    Google Scholar 

  64. T. G. O’Connor, Y. Ben-Shlomo, J. Heron, et al., “Prenatal anxiety predicts individual differences in cortisol in preadolescent children,” Biol. Psychiat., 58, 211-217 (2005).

    Article  PubMed  CAS  Google Scholar 

  65. J. I. Koenig, C.-D. Walker, R. D. Romeo, et al., “Effects of stress across the lifespan,” Stress, 14, No. 5, 475-480 (2011).

    Article  PubMed  Google Scholar 

  66. T. Oberlander, J. Weinberg, M. Papsdorf, et al., “Prenatal exposure to maternal depression and methylation of human glucocorticoid receptor gene (NR3C1) in newborns,” Epigenetics, 3, 97-106 (2008).

    Article  PubMed  Google Scholar 

  67. A. M. Devlin, U. Brain, J. Austin et al., “Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth,” PLoS ONE, 5, No. 8, e12201. doi:10.1371/journal.pone.0012201 (2010).

    PubMed Central  PubMed  Google Scholar 

  68. R. Zh. Mukhamedrakhimov, A Mother and a Baby: Psychological Interaction, Rech’, Moscow (2003).

    Google Scholar 

  69. M. J. Meaney, “Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations,” Annu. Rev. Neurosci., 24, 1161-1192 (2001).

    Article  PubMed  CAS  Google Scholar 

  70. F. A. Champagne, “Epigenetic mechanisms and the transgenerational effects of maternal care,” Front. Neuroendocrinol., 29, 386-397 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  71. D. Liu, J. Diorio, B. Tannenbaum, et al., “Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress,” Science, 277, No. 5332, 1659-1662 (1997).

    Article  PubMed  CAS  Google Scholar 

  72. I. C. G. Weaver, N. Cervoni, F. A. Champagne, et al., “Epigenetic programming by maternal behavior,” Nature Neurosci., 7, 847-854 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. P. M. Plotsky and M. J. Meaney, “Early postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats,” Mol. Brain Res., 18, 195-200 (1993).

    Article  PubMed  CAS  Google Scholar 

  74. D. Liu, C. Caldji, S. Sharma, et al., “The effects of early life events on in vivo release of norepinephrine in the paraventricular nucleus of the hypothalamus and hypothalamic-pituitary-adrenal responses during stress,” J. Neuroendocrinol., 12, 5-12 (2000).

    Article  PubMed  Google Scholar 

  75. C. D. Walker, Z. Xu, J. Rochford, et al., “Naturally occurring variations in maternal care modulate the effects of repeated neonatal pain on behavioral sensitivity to thermal pain in the adult offspring,” Pain, 140, No. 1, 167-176 (2008).

    Article  PubMed  Google Scholar 

  76. C. D. Walker, “Maternal touch and feed as critical regulators of behavioral and stress responses in the offspring,” Dev. Psychobiol., 52, No. 7, 638-650 (2010).

    Article  PubMed  Google Scholar 

  77. S. V. Coutinho, P. M. Plotsky, M. Sablad, et al., “Neonatal maternal separation alters stress-induced responses to viscerosomatic nociceptive stimuli in rat,” Am. J. Physiol. Gastrointest. Liver Physiol., 282, G307-G316 (2002).

    Article  PubMed  CAS  Google Scholar 

  78. A. Caspi, K. Sugden, and T. E. Moffitt, “Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene,” Science, 301, 386-389 (2003).

    Article  PubMed  CAS  Google Scholar 

  79. E. B. Binder, R. G. Bradley, L. Wei, et al., “Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults,” J. Am. Med. Assoc., 299, 1291-1305 (2008).

    Article  CAS  Google Scholar 

  80. F. A. Champagne and J. P. Curley, “Epigenetic mechanisms mediating the long-term effects of maternal care on development,” Neurosci. Biobehav. Rev., 33, No. 4, 593-600 (2009).

    Article  PubMed  Google Scholar 

  81. D. Crews, “Epigenetics and its implications for behavioral neuroendocrinology,” Front. Neuroendocrinol., 29, No. 3, 344-357 (2008).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. P. O. McGowan and M. Szyf, “The epigenetics of social adversity in early life: implications for mental health outcomes,” Neurobiol. Dis., 39, No. 1, 66-72 (2010).

    Article  PubMed  Google Scholar 

  83. B. Labonte and G. Turecki, “The epigenetics of suicide: explaining the biological effect of early life environmental adversity,” Arch. Suicide Res., 14, No. 4, 291-310 (2011).

    Article  Google Scholar 

  84. P. O. McGowan, A. Sasaki, A. C. D’Alessio, et al., “Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse,” Nat. Neurosci., 12, No. 3, 342-348 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. M. J. Meaney, J. Diorio, D. Francis, et al., “Postnatal handling increases the expression of cAMP-inducible transcription factors in the rat hippocampus: The effects of thyroid hormones and serotonin,” J. Neurosci., 20, No. 10, 3926-3935 (2000).

    PubMed  CAS  Google Scholar 

  86. B. Buwalda, M. H. P. Kole, A. H. Veenema, et al., “Longterm effects of social stress on brain and behavior: a focus on hippocampal functioning,” Neurosci. Biobehav. Rev., 29, No. 1, 83-97 (2005).

    Article  PubMed  Google Scholar 

  87. N. M. Tsankova, O. Berton, W. Renthal, et al., “Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action,” Nat. Neurosci., 9, No. 4, 519-525 (2006).

    Article  PubMed  CAS  Google Scholar 

  88. R. S. Duman and L. M. Monteggia, “A neurotrophic model of stress-related mood disorders,” Biol. Psychiat., 59, No. 12, 1116-1127 (2006).

    Article  PubMed  CAS  Google Scholar 

  89. M. Sarchiapone, V. Carli, A. Roy, et al., “Association of polymorphism (Val66Met) of brain-derived neurotrophic factor with suicide attempts in depressed patients,” Neuropsychobiology, 57, No. 3, 139-145 (2008).

    Article  PubMed  CAS  Google Scholar 

  90. T. L. Roth, F. D. Lubin, A. J. Funk, et al., “Lasting epigenetic influence of early-life adversity on the BDNF gene,” Biol. Psychiat., 65, No. 9, 760-769 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. S. Keller, M. Sarchiapone, F. Zarrilli, et al., “Increased BDNF promoter methylation in the Wernicke area of suicide subjects,” Arch. Gen. Psychiat., 69, No. 1, 62-70 (2012).

    Article  Google Scholar 

  92. N. Borghol, M. Suderman, W. McArdle, et al., “Associations with early-life socio-economic position in adult DNA methylation,” Int. J. Epidemiol., 10.1093/ ije/dyr147 (2011).

  93. J. Goodall, Chimpanzee in Nature: Behavior [in Russian], Mir, Moscow (1992).

    Google Scholar 

  94. L. A. Fairbanks, “Early experience and cross-generational continuity of mother-infant contact in vervet monkeys,” Dev. Psychobiol., 22, 669-681 (1986).

    Article  Google Scholar 

  95. D. Mastripieri, K. Wallen, and K. A. Carrol, “Infant abuse runs in families of group-living pigtail macaques,” Child Abuse Negl., 21, 465-471 (1997).

    Article  Google Scholar 

  96. D. Mastripieri, “Parenting styles of abusive mothers in group-living rhesus macaques,” Anim. Behav., 55, 1-11 (1998).

    Article  Google Scholar 

  97. M. Bardi and M. A. Huffman, “Effects of maternal style on infant behavior in Japanese macaques (Macaca fuscata),” Dev. Psychobiol., 41, No. 4, 364-372 (2002).

    Article  PubMed  Google Scholar 

  98. D. Benoit and K. C. Parker, “Stability and transmission of attachment across three generations,” Child Dev., 65, 1444-1456 (1994).

    Article  PubMed  CAS  Google Scholar 

  99. M. H. van Ijzendoorn, “Adult attachment representations, parental responsiveness and infant attachment: a metaanalysis of the predictive validity of the adult attachment interview,” Psychol. Bull., 117, 387-403 (1995).

    Article  PubMed  Google Scholar 

  100. D. R. Pederson, K. E. Gleason, G. Moran, et al., “Maternal attachment representations maternal sensitivity and the infant-mother attachment relationship,” Dev. Psychol., 34, 925-933 (1998).

    Article  PubMed  CAS  Google Scholar 

  101. H. J. Lee, A. H. Macbeth, J. H. Pagani, and W. S. Young, “Oxytocin: the great facilitator of life,” Prog. Neurobiol., 88, No. 2, 127-151 (2009).

    PubMed  CAS  PubMed Central  Google Scholar 

  102. Z. R. Donaldson and L. J. Young, “Oxytocin, vasopressin, and the neurogenetics of sociality,” Science, 322, 900-904 (2008).

    Article  PubMed  CAS  Google Scholar 

  103. N. Numan, “Motivational system and the neural circuitry of maternal behavior in the rat,” Dev. Psychobiol., 49 , 12-21 (2007).

    Article  PubMed  CAS  Google Scholar 

  104. D. C. Francis, F. C. Champagne, and M. J. Meaney, “Variations in maternal behavior are associated with differences in oxytocin receptor levels in the rat,” J. Neuroendocrinol., 12, 1145-1148 (2000).

    Article  PubMed  CAS  Google Scholar 

  105. F. C. Champagne, J. Diorio, S. Sharma, et al., “Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors,” Proc. Natl. Acad. Sci. USA, 98, 12736-12741 (2002).

    Article  Google Scholar 

  106. F. A. Champagne, I. C. Weaver, J. Diorio, et al., “Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring,” Endocrinology, 147, 2909-2915 (2006).

    Article  PubMed  CAS  Google Scholar 

  107. J. P. Curley, F. A. Champagne, P. Bateson, et al., “Transgenerational effects of impaired maternal care on behavior of offspring and grandoffspring,” Anim. Behav., 75, No. 4, 1551-1561 (2008).

    Article  Google Scholar 

  108. L. A. Smit-Rigter, F. A. Champagne, and J. A. van Hooft, “Lifelong impact of variations in maternal care on dendritic structure and function of cortical layer 2/3 pyramidal neurons in rat offspring,” PLoS ONE, 4, No. 4, e5167. doi: 10.1371/journal.pone.0005167 (2009).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  109. E. Jablonka and G. Raz, “Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution,” Quart. Rev. Biol., 84, No. 2, 131-176 (2009).

    Article  PubMed  Google Scholar 

  110. M. E. Pembrey, L. O. Bygren, G. Kaati, et al., “Sexspecific, male-line transgenerational responses in humans,” Eur. J. Human Genet., 14, No. 2, 159-166 (2006).

    Article  Google Scholar 

  111. C. Lindqvist, A. M. Janczak, D. Natt, et al., “Transmission of stress-induced learning impairment and associated brain gene expression from parents to offspring in chickens,” PLoS ONE, 2, No. 4, e364. doi: 10.1371/journal.pone.0000364 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  112. Y. Liu, “Like father like son. A fresh review of the inheritance of acquired characteristics,” EMBO Rep., 8, No. 9, 798-803 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  113. E. B. Keverne and J. P. Curley, “Epigenetics, brain evolution and behavior,” Front. Neuroendocrinol., 29, 398-412 (2008).

    Article  PubMed  CAS  Google Scholar 

  114. A. Joshi, “Behavior genetics in the post-genomics era: From genes to behavior and vice versa,” Curr. Sci., 89, No. 7, 1128-1135 (2005).

    Google Scholar 

  115. C. W. Kuzawa, “The fetal origins of developmental plasticity: are fetal clues reliable predictors of future nutritional environments?” Am. J. Human Biol., 17, 5-21 (2005).

    Article  Google Scholar 

  116. B. M. Lester, E. Tronick, E. Nestler, et al., “Behavioral epigenetics,” Ann. N. Y. Acad. Sci., 1226, 14-33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. A. Caspi, J. McClay, T. E. Moffitt, et al., “Role of genotype in the cycle of violence in maltreated children,” Science, 297, 851-854 (2002).

    Article  PubMed  CAS  Google Scholar 

  118. J. Tabery, “Biometric and developmental gene-environment interactions: looking back, moving forward,” Dev. Psychopathol., 19, 961-976 (2007).

    Article  PubMed  Google Scholar 

  119. D. G. Kilpatrick, K. C. Koenen, K. J. Ruggiero, et al., “The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults,” Am. J. Psychiat., 164, No. 11, 1693-1699 (2007).

    Article  PubMed  Google Scholar 

  120. T. Bradley, M. E. Cupples, and H. Irvine, “A case control study of a deprivation triangle: teenage motherhood, poor educational achievement and unemployment,” Int. J. Adolesc. Med. Health, 14, No. 2, 117-123 (2002).

    Article  PubMed  Google Scholar 

  121. E. Mittendorfer-Rutz, F. Rasmussen, and D. Wasserman, “Restricted fetal growth and adverse maternal psychosocial and socioeconomic conditions as risk factors for suicidal behavior of offspring: a cohort study,” Lancet, 364, 1135-1140 (2004).

    Article  PubMed  CAS  Google Scholar 

  122. G.-X. Jiang, F. Rasmussen, and D. Wasserman, “Short stature and poor psychological performance: risk factors for attempted suicide among Swedish make conscripts,” Acta Psychiat. Scand., 100, 433-440 (1999).

    Article  PubMed  CAS  Google Scholar 

  123. P. K. E. Magnusson, F. Rasmussen, D. A. Lawlor, et al., “Association of body mass index with suicide mortality: A prospective cohort study of more than one million men,” Am. J. Epidemiol., 163, 1-8 (2006).

    Article  PubMed  Google Scholar 

  124. C. S. Meade, T. S. Kershaw, and J. R. Ickovics, “The intergenerational cycle of teenage motherhood: an ecological approach,” Health Psychol., 27, No. 4, 419429 (2008).

    Article  Google Scholar 

  125. J. D. Molina, F. Lopez-Munoz, D. J. Stein, et al., “Borderline personality disorder: A review and reformulation from evolutionary theory,” Med. Hypotheses, 73, 382-386 (2009).

    Article  PubMed  Google Scholar 

  126. K. S. Kendler, “Genetic and environmental pathways to suicidal behavior: Reflections of a genetic epidemiologist,” Eur. Psychiat., 25, 300–303 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Rozanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozanov, V.A. Epigenetics: Stress and Behavior. Neurophysiology 44, 332–350 (2012). https://doi.org/10.1007/s11062-012-9304-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9304-y

Keywords

Navigation