Skip to main content

Advertisement

Log in

P2X Receptors: Peculiarities of the Structure and Modulation of the Functions

  • Reviews
  • Published:
Neurophysiology Aims and scope

This review summarizes the data of modern studies examining peculiarities of the structure and functioning of ionotropic ATP-sensitive receptors (P2X). The properties of different P2X receptor subtypes, their pharmacology, regulation of the permeability, conductivity, sensitization, and desensitization are compared. The properties of homomeric and heteromeric receptors are analyzed. The involvement of ATP-activated mechanisms in the processes of intra- and intercellular signalization, nociception, thermoreception, and development of pathological states is described. Despite the fact that P2X receptors belong to ionotropic membrane receptor structures, there are data that their activity depends on the cell metabolism. The statement that properties of P2X receptors are modulated by changes in relative expression of different types of their subunits is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Burnstock and J. Wood, “Purinergic receptors: their role in nociception and primary afferent neurotransmission,” Curr. Opin. Neurobiol., 6, 526–532 (1996).

    Article  PubMed  CAS  Google Scholar 

  2. G. Burnstock, “Purine and pyrimidine receptors,” Cell Motil. Life Sci., 64, 1471–1483 (2007).

    Article  CAS  Google Scholar 

  3. C. Benham and R. Tsien, “A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle,” Nature, 328, 275–278 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. B. Bean, C. Williams, and P. Ceelen, “ATP-activated channels in rat and bullfrog sensory neurons: current-voltage relation and single-channel behavior,” J. Neurosci., 10, 11-19 (1990).

    PubMed  CAS  Google Scholar 

  5. R. Evans and V. Derkach, “ATP mediates fast synaptic transmission in mammalian neurons,” Nature, 357, 503–505 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. L. A. Fieber and D. J. Adams, “Adenosine triphosphateevoked currents in cultured neurons dissociated from rat parasympathetic cardiac ganglia,” J. Physiol., 434, 239–256 (1991).

    PubMed  CAS  Google Scholar 

  7. O. Krishtal, S. Marchenko, and A. Obukhov, “Cationic channels activated by extracellular ATP in rat sensory neurons,” Neuroscience, 27, 995–1000 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. A. Surprenant, G. Bueli, and R. A. North, “P2X receptors bring new structure to ligand-gated ion channels,” Trends Neurosci., 18, 224–229 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. R. North, “Molecular physiology of P2X receptors,” Physiol. Rev., 82, 1013–1067 (2002).

    PubMed  CAS  Google Scholar 

  10. M. Abbracchio and G. Burnstock, “Purinoceptors: Are there families of p2x and p2y purinoceptors,” Pharmacol. Ther., 64, 445–475 (1994).

    Article  PubMed  CAS  Google Scholar 

  11. V. Ralevic and G. Burnstock, “Receptors for purines and pyrimidines,” Pharmacol. Rev., 50, 413–492 (1998).

    PubMed  CAS  Google Scholar 

  12. P. Cesare and P. McNaughton, “Peripheral pain mechanisms,” Curr. Opin. Neurobiol., 7, 493–499 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. M. Berridge, “Elementary and global aspects of calcium signaling,” J. Physiol., 499, 291–306 (1997).

    PubMed  CAS  Google Scholar 

  14. M. Berridge, P. Lipp, and M. Bootman, “The versatility and universality of calcium signalling,” Nat. Rev. Mol. Cell Biol., 1, 11–21 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. R. Burgoyne, “Neuronal calcium sensor proteins: Generating diversity in neuronal Ca2+ signaling,” Nat. Rev. Neurosci., 8, 182–193 (2007).

    Article  PubMed  CAS  Google Scholar 

  16. M. Kress and S. Guenther, “Role of [Ca2+] i in the ATPinduced heat sensitization process of rat nociceptor neurons,” J. Neurophysiol., 81, 2612–2619 (1999).

    PubMed  CAS  Google Scholar 

  17. T. Hagenacker, D. Ledwig, and D. Busselberg, “Feedback mechanisms in the regulation of intracellular calcium ([Ca2+]i) in the peripheral nociceptive system: Role of trpv-1 and pain related receptors,” Cell Calcium, 43, 215–227(2008).

    Article  PubMed  CAS  Google Scholar 

  18. E. Carafoli, “Calcium signaling: A tale for all seasons,” Proc. Natl. Acad. Sci. USA, 99, 1115–1122 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. B. Chizh and P. Illes, “P2X receptors and nociception,” Pharmacol. Rev., 53, 553–568 (2000).

    Google Scholar 

  20. G. Torres, T. Egan, and M. Voigt, “Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners,” J. Biol. Chem., 274, 6653–6659 (1999).

    Article  PubMed  CAS  Google Scholar 

  21. A. Nicke, H. Baumert, J. Rettinger, et al., “P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels,” EMBO J., 17, 3016–3028 (1998).

    Article  PubMed  CAS  Google Scholar 

  22. A. B. MacKenzie, A. Surprenant, and R. A. North, “Functional and molecular diversity of purinergic ion channel receptors,” Ann. N. Y. Acad. Sci., 868, 716–729 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. T. Egan, D. Samways, and Z. Li, “Biophysics of P2X receptors,” Pflügers Arch., 452, 501–512 (2006).

    Article  PubMed  CAS  Google Scholar 

  24. J. Roberts, C. Vial, H. Digby, et al., “Molecular properties of P2X receptors,” Pflügers Arch., 452, 486–500 (2006).

    Article  PubMed  CAS  Google Scholar 

  25. G. Burnstock, “P2X receptors in sensory neurons,” Br. J. Anaesthesiol., 84, 476–488 (2000).

    Article  CAS  Google Scholar 

  26. R. J. Evans, “Orthosteric and allosteric binding sites of P2X receptors,” Eur. Biophys. J., 38, 319–327 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. G. Burnstock, “Physiology and pathophysiology of purinergic neurotransmission,” Physiol. Rev., 87, 659–797 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. F. Di Virgilio, “Liaisons dangereuses: P2X(7) and the inflammasome,” Trends Pharmacol. Sci., 28, 465–472 (2007).

    Article  PubMed  Google Scholar 

  29. P. Pelegrin and A. Surprenant, “Pannexin-1 couples to maitotoxin- and nigericininduced interleukin-1 beta release through a dye uptake-independent pathway,” J. Biol. Chem., 282, 2386–2394 (2007).

    Article  PubMed  CAS  Google Scholar 

  30. S. Locovei, E. Scemes, F. Qiu, et al., “Pannexin 1 is part of the pore forming unit of the P2X(7) receptor death complex,” FEBS Lett., 581, 483–488 (2007).

    Article  PubMed  CAS  Google Scholar 

  31. S. Chaumont and B. Khakh, “Patch-clamp coordinated spectroscopy shows P2X2 receptor permeability dynamics require cytosolic domain rearrangements but not Panx-1 channels,” Proc. Nat. Acad. Sci. USA, 105, 12063–12068 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. S. Cook, L. Vulchanova, K. Hargreaves, et al., “Distinct ATP receptors on pain-sensing and stretch-sensing neurons,” Nature, 387, 505–508 (1997).

    Article  PubMed  CAS  Google Scholar 

  33. K. Kobayashi, T. Fukuoka, H. Yamanaka, et al., “Differential expression patterns of mRNAs for P2X receptor subunits in neurochemically characterized dorsal root ganglion neurons in the rat,” J. Comp. Neurol., 481, 377–390 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. X. Zhang, P. Han, C. Faltynek, et al., “Functional expression of P2X7 receptors in non-neuronal cells of rat dorsal root ganglia,” Brain Res., 1052, 63–70 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. E. Adinolfi, C. Pizzirani, M. Idzko, et al., “P2X7 receptor: death or life?” Purin. Sign., 1, 219–227 (2005).

    Article  CAS  Google Scholar 

  36. B. Khakh, X. Bao, C. Labarca, and H. Lester, “Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds,” Nat. Neurosci., 2, 322–330 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. C. Virginio, A. MacKenzie, F. Rassendren, et al., “Pore dilation of neuronal P2X receptor channels,” Nat. Neurosci., 2, 315–321 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. Y. Chen, G. Li, C. Wang, et al., “Mechanisms underlying enhanced P2X receptor-mediated responses in the neuropathic pain state,” Pain, 119, 38–44 (2005).

    Article  PubMed  CAS  Google Scholar 

  39. H. Franke, U. Krugel, and P. Illes, “P2 receptors and neuronal injury,” Pflügers Arch., 452, 622–644 (2006).

    Article  PubMed  CAS  Google Scholar 

  40. B. Khakh and R. North, “P2X receptors as cell-surface ATP sensors in health and disease,” Nature, 442, 527–532 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. D. Milius, H. Gr’oger-Arndt, D. Stanchev, et al., “Oxygen/glucose deprivation increases the integration of recombinant P2X7 receptors into the plasma membrane of HEK293 cells,” Toxicology, 238, 60–69 (2007).

    Article  PubMed  CAS  Google Scholar 

  42. Y. Pankratov, U. Lalo, and O. A. Krishtal, “Role for P2X receptors in long-term potentiation,” J. Neurosci., 22, 8363–8369 (2002).

    PubMed  CAS  Google Scholar 

  43. C. Boucsein, R. Zacharias, K. Farber, et al., “Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro,” Eur. J. Neurosci., 17, 2267–2276 (2003).

    Article  PubMed  Google Scholar 

  44. J. De Leo, L. Sorkin, and L. Watkins, Immune and Glial Regulation of Pain, IASP Press, Seattle (2007).

    Google Scholar 

  45. A. Ziganshin, “Role of ATP receptors (P2 receptors) in the nervous system,” Nevrol. Vestn., 37, 45–53 (2005).

    Google Scholar 

  46. G. Lambrecht, S. Damer, B. Niebel, et al., “Novel ligands for P2 receptor subtypes in innervated tissues,” Prog. Brain Res., 120, 107–117 (1999).

    Article  PubMed  CAS  Google Scholar 

  47. B. Khakh, W. Proctor, T. Dunwiddie, et al., “Allosteric control of gating and kinetics at P2X4 receptor channels,” J. Neurosci., 19, 7289–7299 (1999).

    PubMed  CAS  Google Scholar 

  48. S. Silberberg, and M. Swartz, “Ivermectin interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels,” Neuron, 54, 263–274 (2007).

    Article  PubMed  CAS  Google Scholar 

  49. K. Jacobson, Y. Kim, S. Wildman, et al., “A pyridoxine cyclic phosphate and its 6-azoaryl derivative selectively potentiate and antagonize activation of P2X1 receptors,” J. Med. Chem., 41, 2201–2206 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. G. Mo, L.-P. Bernier, Q. Zhao, et al., “Subtypespecific regulation of P2X3 and P2X2/3 receptors by phosphoinositides in peripheral nociceptors,” Mol. Pain, 5, 47 (2009).

    Article  PubMed  Google Scholar 

  51. C. Wang, G. Li, and L. Huang, “Prostaglandin E2 potentiation of P2X3 receptor mediated currents in dorsal root ganglion neurons,” Mol. Pain, 3, 22 (2007).

    Article  PubMed  Google Scholar 

  52. C. Wang, Y. Gu, G. Li, and L. Huang, “A critical role of the cAMP sensor Epac in switching protein kinase signalling in prostaglandin E2-induced potentiation of P2X3 receptor currents in inflamed rats,” J. Physiol., 584, 191–203 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. S. Ding and F. Sachs, “Single channel properties of P2X2 purinoceptors,” J. Gen. Physiol., 113, 695–719 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. N. Nagaya, R. Tittle, N. Saar, et al., “An intersubunit zinc binding site in rat P2X2 receptors,” J. Biol. Chem., 280, 25982–25993 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. C. Coddou, J. Codocedo, S. Li, et al., “Reactive oxygen species potentiate the P2X2 receptor activity through intracellular Cys430,” J. Neurosci., 29, 12284–12291 (2009).

    Article  PubMed  CAS  Google Scholar 

  56. A. Surprenant, F. Rassendren, E. Kawashima, et al., “The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7),” Science, 272, 735–738 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. O. Krishtal, S. Marchenko, and A. Obukhov, “ATPactivated ionic channel of sensory neurons of the rat,” Dokl. Akad. Nauk SSSR, 296, 1005–1007 (1987).

    Google Scholar 

  58. V. Khmyz, O. Maximyuk, V. Teslenko, et al., “P2X3 receptor gating near normal body temperature,” Pflügers Arch., 456, 339–347 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. E. Sokolova, A. Skorinkin, I. Moiseev, et al., “Experimental and modeling studies of desensitization of P2X3 receptors,” Mol. Pharmacol., 70, 373–382 (2006).

    PubMed  CAS  Google Scholar 

  60. E. Pratt, T. Brink, P. Bergson, et al., “Use-dependent inhibition of P2X3 receptors by nanomolar agonist,” J. Neurosci., 25, 7359–7365 (2005).

    Article  PubMed  CAS  Google Scholar 

  61. A. Grotea, M. Hansc, Z. Boldogkoib, et al., “Nanomolar ambient ATP decelerates P2X3 receptor kinetics,” Neuropharmacology, 55, 1212–1218 (2008).

    Article  Google Scholar 

  62. R. Karoly, A. Mike, P. Illes, and Z. Gerevich, “The unusual state-dependent affinity of P2X3 receptors can be explained by an allosteric two-open-state model,” Mol. Pharmacol., 73, 224–234 (2008).

    Article  PubMed  CAS  Google Scholar 

  63. C. Virginio, R. North, and A. Surprenant, “Calcium permeability and block at homomeric and heteromeric p2x2 and p2x3 receptors, and p2x receptors in rat nodose neurons,” J. Physiol., 510, 27–35 (1998).

    Article  PubMed  CAS  Google Scholar 

  64. S. Thomas, C. Virginio, R. North, and A. Surprenant, “The antagonist trinitrophenyl-ATP reveals co-existence of distinct P2X receptor channels in rat nodose neurons,” J. Physiol., 509, 411–417 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. M. Liu, B. King, P. Dunn, et al., “Coexpression of P2X3 and P2X2 receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory Neurons,” J. Pharmacol. Exp. Ther., 296, 1043–1050 (2001).

    PubMed  CAS  Google Scholar 

  66. S. Wildman, J. Marks, L. Churchill, et al., “Regulatory interdependence of cloned epithelial Na channels and P2X receptors,” J. Am. Soc. Nephrol., 16, 2586–2597 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. M. Mamenko, I. Proudnikov, and O. Kryshtal’, “Suppression of P2X3 receptor-mediated currents in sensory neurons of the rats by opioids,” Dopov. NAN Ukr., 7, 170–175 (2009).

    Google Scholar 

  68. I. Chizhmakov, N. Mamenko, T. Volkova, et al., “P2X receptors in sensory neurons co-cultured with cancer cells exhibit a decrease in opioid sensitivity,” J. Neurosci., 29, 76–86 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye. A. Petrushenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrushenko, Y.A. P2X Receptors: Peculiarities of the Structure and Modulation of the Functions. Neurophysiology 44, 163–173 (2012). https://doi.org/10.1007/s11062-012-9284-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-012-9284-y

Keywords

Navigation