Skip to main content

Advertisement

Log in

Mechanisms Underlying the Process of Demyelination in Multiple Sclerosis

  • Published:
Neurophysiology Aims and scope

Abstract

The author generalizes and analyzes the published data and her own findings related to the cellular and molecular mechanisms underlying a demyelinating disease, multiple sclerosis. The mechanisms of the immunopathogenic process in multiple sclerosis, the involvement of microglia and astrocytes in destruction of the myelin sheaths, and injury of oligodendrocytes are discussed. Experimental models used for examination of the processes of demyelination of the nerve tissue in vitro (tissue cultures) and in vivo (experimental allergic encephalomyelitis) are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Murray, “The history of multiple sclerosis,” in: Multiple Sclerosis: Diagnosis, Medical Management, and Rehabilitation, Demos Medical, New York (2000).

    Google Scholar 

  2. J. Zajicek, “The epidemiology of multiple sclerosis,” J. Neurol., 254, No. 12, 1742 (2007).

    Article  PubMed  Google Scholar 

  3. S. M. Vinnichouk and O. A. Myalovitskaya, Multiple Sclerosis [in Russian], Kompolis, Kyiv (2001).

    Google Scholar 

  4. A. Bar-Or, E. M. L. Oliveira, D. E. Anderson, et al., “Molecular pathogenesis of multiple sclerosis,” J. Neuroimmunol., 100, Nos. 1/2, 252-259 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Y. Galboiz and A. Miller, “Immunological indicators of disease activity and prognosis in multiple sclerosis,” Curr. Opin. Neurol., 15, No. 3, 233-237 (2002).

    Article  PubMed  Google Scholar 

  6. J. Antel and D. Arnold, “Multiple sclerosis,” in: Neuroglia, Oxford Univ. Publ., New York (2005).

    Google Scholar 

  7. S. Sawcer, P. N. Goodfellow, and A. Compston, “The genetic analysis of multiple sclerosis,” Trends Gen., 13, No. 6, 234-239 (1997).

    Article  CAS  Google Scholar 

  8. C. C. C. Bernard and N. K. de Rosbo, “Multiple sclerosis: an autoimmune disease of multifactorial etiology,” Curr. Opin. Immunol., 4, No. 6, 760-765 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. A. P. Khokhlov and Yu. N. Savchenko, “Myelin and molecular bases of the process of demyelination,” Korsakov Zh. Nevropatol. Psykhiat., 90, No. 8, 104-109 (1990).

    CAS  Google Scholar 

  10. B. Kornek, M. K. Storch, R. Weissert, et al., “Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions,” Am. J. Pathol., 157, No. 1, 267-276 (2000).

    CAS  PubMed  Google Scholar 

  11. B. C Kieseier, M. K. Storch, J. J. Archelos, et al., “Effector pathways in immune mediated central nervous system ddemyelination,” Curr. Opin. Neurol., 12, No. 3, 323-336 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. B.-G. Xiao and H. Link, “Antigen-specific T cells in autoimmune diseases with a focus on multiple sclerosis and experimental allergic encephalomyelitis,” Cell. Mol. Life Sci., 56, Nos. 1/2, 5-21 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. B. C. Kieseier, T. Seifert, G. Giovannoni, et al., “Matrix metalloproteinases in inflammatory ddemyelination: targets for treatment,” Neurology, 53, No. 1, 20-25 (1999).

    CAS  PubMed  Google Scholar 

  14. B. P. Morgan, P. Gasque, S. Singhrao, et al., “The role of complement in disorders of the nervous system,” Immunopharmacology, 38, Nos. 1/2, 43-50 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. E. N. Benveniste, “Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis,” J. Mol. Med., 75, No. 3, 165-173 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. A. Chan, W. W. Tourtellotte, R. Rudick, et al., “Phagocytosis of apoptotic inflammatory cells by microglia and modulation by different cytokines: mechanism for removal of apoptotic cells in the inflamed nervous system,” Glia, 33, No. 1, 87-95 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Y. Dong and E. N. Benveniste, “Immune function of astrocytes,” Glia, 36, No. 2, 180-190 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. I. A. Zavalishnin, M. N. Zakharova, L. Sh. Askarova, et al., “Modern directions in investigation of pathogenesis of demyelinating diseases,” Korsakov Zh. Nevropatol. Psikhiat., 97, No. 5, 64-67 (1997).

    Google Scholar 

  19. M. E. Hatten, R. K. H. Liem, M. L. Shelanski, et al., “Astroglia in CNS injury,” Glia, 4, No. 2, 233-243 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. U. Slobodov, F. Reichert, R. Mirski, et al., “Distinct inflammatory stimuli induce different patterns of myelin phagocytosis and degradation in recruited macrophages,” Exp. Neurol., 167, No. 2, 401-409 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. M. E. Smith, “Phagocytosis of myelin in demyelinative disease: a review,” Neurochem. Res., 24, No. 2, 261-268 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. T. A. Springer, “Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm,” Cell, 76, No. 2, 301-314 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. B. Cannella and C. S. Raine, “The adhesion molecule and cytokine profile of multiple sclerosis lesions,” Ann. Neurol., 37, No. 4, 424-435 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. S. J. Lee and E. N. Benveniste, “Adhesion molecule expression and regulation on cells of the central nervous system,” J. Neuroimmunol., 98, No. 2, 77-88 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. A. Svenningsson, G. K. Hansson, O. Andersen, et al., “Adhesion molecule expression on cerebrospinal fluid T lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls,” Ann. Neurol., 34, No. 2, 155-161 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. R. A. Sobel, M. E. Mitchell, and G. Fondren, “Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system,” Am. J. Pathol., 136, No. 6, 1309-1316 (1990).

    CAS  PubMed  Google Scholar 

  27. C. F. Brosnan, B. Cannella, L. Batistini, et al, “Cytokine localization in multiple sclerosis lesions: correlation with adhesion molecule expression and reactive nitrogen species,” Neurology, 45, Suppl. 6, S16-S21 (1995).

    CAS  PubMed  Google Scholar 

  28. J. J. Archelos and H. P. Hartung, “The role of adhesion molecules in multiple sclerosis: biology, pathogenesis and therapeutic implications,” Mol. Med. Today, 3, No. 7, 310-321(1997).

    Article  CAS  PubMed  Google Scholar 

  29. N. K. Damle, K. Klussman, G. Leytze, et al., “Costimulation of T lymphocytes with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 induces functional expression of CTLA-4, a second receptor for B7,” J. Immunol., 152, No. 6, 2686-2697 (1994).

    CAS  PubMed  Google Scholar 

  30. H. P. Hartung, J. J. Archelos, J. Zielasek, et al., “Circulating adhesion molecules and inflammatory mediators in demyelination: a review,” Neurology, 45, Suppl. 6, S22-S32 (1995).

    CAS  PubMed  Google Scholar 

  31. H. P. Hartung, K. Reiners, J .J. Archelos, et al., “Circulating adhesion molecules and tumor necrosis factor receptor in multiple sclerosis: correlation with magnetic resonance imaging,” Ann. Neurol., 38, No. 2, 186-193 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. B. T. Fife, G. B. Huffnagel, W. A. Kuziel, et al., “Chemokine receptor 2 is critical for induction of experimental autoimmune encephalomyelitis,” J. Exp. Med., 192, No. 6, 899-905 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. R. Gold, H.-P. Hartung, K. V. Toyka, “Animal models for autoimmune demyelinating disorders of the nervous system,” Mol. Med. Today, 6, No. 2, 88-91 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. T. L. Sorensen, M. Tani, J. Jensen, et al., “Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients,” J. Clin. Invest., 103, No. 6, 807-815 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. J. Hvas. C. McLean, J. Justesen, et al., “Perivascular T cells express the pro-inflammatory chemokine RANTES mRNA in multiple sclerosis lesions,” Scand. J. Immunol., 46, No. 2, 195-203 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. C. McManus, J. W. Berman, F. M. Brett, et al., “MCP-1, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study,” J. Neuroimmunol., 86, No. 1, 20-29 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. P. Van Der Voorn, J. Tekstra, R. H. Beelen, et al., “Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions,” Am. J. Pathol., 154, No. 1, 45-51 (1999).

    Google Scholar 

  38. A. D. Luster, “Chemokines – chemotactic cytokines that mediate inflammation,” New Engl. J. Med., 338, No. 7, 436-445 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. S. G. Ward, K. Bacon, and J. Westwick, “Chemokines and T lymphocytes: more than an attraction,” Immunity, 9, No. 1, 1-11 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. L. Izikson, R. S. Klein, I. F. Charo, et al., ”Resistance to experimental autoimmune encephalomyelitis in mice lacking the CCchemokine receptor (CCR)2,” J. Exp. Med., 192, No. 7, 1075-1080 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. D. C. Anthony, K. M. Miller, S. Fearn, et al., “Matrix metalloproteinase expression in an experimentally-induced DTH model of multiple sclerosis in the rat CNS,” J. Neuroimmunol., 87, Nos. 1/2, 62-72 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. R. A. Black, C. T. Rauch, C. J. Kozlosky, et al., “A metalloproteinase disintegrin that releases tumor-necrosis factor-alpha from cells,” Nature, 385, No. 6618, 729-733 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. E. Ambrosini and F. Aloisi, “Chemokines and glial cells: a complex network in the central nervous system,” Neurochem. Res., 29, No. 5, 1017-1038 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. J. E. Merrill and E. N. Benveniste, “Cytokines in inflammatory brain lesions: helpful and harmful,” Trends Neurosci., 19, No. 8, 331-338 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. R Brett and M. G. Rumsby, “Evidence of free radical damage in the central nervous system of guinea-pigs at the prolonged acute and early relapse stages of chronic relapsing experimental allergic encephalomyelitis,” Neurochem. Int., 23, No. 1, 35-44 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. B Mitrovic, L. J. Ignarro, H. V. Vinters, et al., “Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes,” Neuroscience, 65, No. 2, 531-539 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. T. A. Pivneva, E. V. Kolotushkina, and N. A. Mel’nik, “Mechanisms of the demyelination process and its modeling,” Neurophysiology, 31, No. 6, 403-412 (1999).

    Article  Google Scholar 

  48. G. A. Roth, V. Spada, K. Hamill, et al., “Insulin-like growth factor I increases myelination and inhibits demyelination in cultured organotypic nerve tissue,” Brain Res. Dev. Brain Res., 88, No. 1, 102-108 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. G. G. Skibo and L. M. Koval’, Structural Regularities of the Development of Neurons under Conditions of Culturing [in Russian], Naukova Dumka, Kyiv (1992).

    Google Scholar 

  50. N. J. Abbott, “Astrocyte-endothelial interactions and blood-brain barrier permeability,” J. Anat., 200, No. 6, 629-638 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. V. P. Bozhkova, P. D. Brezhestovskii, V. P. Byravlev, et al., Manual of Culturing of Nerve Tissue: Methods, Technical Equipment, Problems [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  52. L. M. Notterpek and L. H. Rome, “Functional evidence for the role of axolemma in CNS myelination,” Neuron, 13, No. 2, 473-485 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. B. D. Trapp, H. D. Webster, D. Johnson, et al., “Myelin formation in rotation-mediated aggregating cell cultures: immunocytochemical, electron microscopic, and biochemical observations,” J. Neurosci., 2, No. 7, 986-993 (1982).

    CAS  PubMed  Google Scholar 

  54. L. Hertz, L. Peng, and J. C. Lai, “Functional studies in cultured astrocytes,” Methods, 16, No. 3, 293-310 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. R. C. Melcangi, M. Ballabio, M. Magnaghi, et al., “Metabolism of steroids in pure cultures of neurons and glial cells: role of intracellular signalling,” J. Steroid Biochem. Mol. Biol., 53, Nos. 1/6, 331-336 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. D. D. Murphy and S. B. Andrews, “Culture models for the study of estradiol-induced synaptic plasticity,” J. Neurocytol., 29, Nos. 5/6, 411-417 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. S. Raval-Fernandez and L. H. Rome, “Role of axonal components during myelination,” Microsc. Res. Tech., 41, No. 5, 379-392 (1998).

    Article  Google Scholar 

  58. N. Ben-Ari, V. Tseeb, D. Raggozzino, et al., “Gamma-aminobutyric acid (GABA): a fast excitatory transmitter which may regulate the development of hippocampal neurones in early postnatal life,” Prog. Brain Res., 102, 261-273 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. E. Zapryanova, O. S. Sotnikov, S. S. Sergeeva, et al., “Axon reactions precede demyelination in experimental models of multiple sclerosis,” Neurosci. Behav. Physiol., 34, No. 4, 337-342 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. A. M. Baker, M. C. Grekova, and J. R. Richert, “EAE susceptibility in FVB mice,” J. Neurosci. Res., 61, No. 2, 140-145 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. A. Ben-Nun, I. Mendel, and N. Kerlero de Rosbo, “Immunomodulation of murine experimental autoimmune encephalomyelitis by pertussis toxin: the protective activity, but not the disease-enhancing activity, can be attributed to the nontoxic B-oligomer,” Proc. Assoc. Am. Physicians, 109, No. 2, 120-125 (1997).

    CAS  PubMed  Google Scholar 

  62. I. Mendel, N. Kerlero de Rosbo, and A. Ben-Nun, “The autoimmune reactivity to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is potentially pathogenic: effect of copolymer 1 on MOG-induced disease,” J. Neurol., 243, Suppl. 1, S14-S22 (1996).

    PubMed  Google Scholar 

  63. Yu. M. Zhabotinskii and V. I. Ioffe, Experimental Allergic Demyelinating Diseases of the Nervous System [in Russian], Meditsina, Leningrad (1975).

    Google Scholar 

  64. E. Gunther, H. Odenthal, and W. Wechsler, “Association between susceptibility to experimental allergic encephalomyelitis and the major histocompatibility system in congenic rat strains,” Clin. Exp. Immunol., 32, No. 3, 429-434 (1978).

    CAS  PubMed  Google Scholar 

  65. M. K. Storch, A. Sterferl, U. Brehm, et al., “Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology,” Brain Pathol., 8, No. 4, 681-694 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. R. Gold, H.-P. Hartung, and H. Lassmann, “T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms,” Trends Neurosci., 20, No. 9, 399-404 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. P. Hjelmstrom, A. E. Juedes, J. Fjell, et al., “B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization,” J. Immunol., 161, No. 9, 4480-4483 (1998).

    CAS  PubMed  Google Scholar 

  68. H. Lassmann, “Models of multiple sclerosis: new insights into pathophysiology and repair,” Curr. Opin. Neurol., 21, No. 3, 242-247 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. G. L. Boccaccio and L. Steinman, “Multiple sclerosis: from a myelin point of view,” J. Neurosci. Res., 45, No. 6, 647-654 (1996).

    Article  CAS  PubMed  Google Scholar 

  70. B. Kalman and F. D. Lublin, “Cytokine therapy,” in: Immunotherapy in Neuroimmunologic Diseases, Martin Dunitz, London (1998).

    Google Scholar 

  71. R. M. Ransohoff, “Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology,” J. Leukoc. Biol., 62, No. 5, 645-652 (1997).

    CAS  PubMed  Google Scholar 

  72. M. Ding, M. Zhang, J. L. Wong, et al., “Antisense knockdown of inducible nitric oxide synthase inhibits induction of experimental autoimmune encephalomyelitis in SJL/J mice,” J. Immunol., 160, No. 6, 2560-2564 (1998).

    CAS  PubMed  Google Scholar 

  73. M. P. Pender, “Demyelination and neurological signs in experimental allergic encephalomyelitis,” J. Neuroimmunol., 15, No. 1, 11-24 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. K. W. Selmaj and C. S. Raine, “Tumor necrosis factor mediates myelin and oligodendrocyte damage in vitro,” Ann. Neurol., 23, No. 4, 339-346 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. J. Bauer, I. Huitinga, W. Zhao, et al., “The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis,” Glia, 15, No. 4, 437-446 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. M. Mayer-Proschel, M. S. Rao, and M. Noble, “Progenitor cells of the central nerve system: a boon for clinical neuroscience,” J. NIH Res., 9, 31-36 (1997).

    Google Scholar 

  77. J. A. Kawszak, M. M. Mathisen, J. A. Drazba, et al., “Digitized image analysis reveals diffuse abnormalities in normal-appearing white matter during acute experimental autoimmune encephalomyelitis,” J. Neurosci. Res., 54, No. 3, 364-372 (1998).

    Article  Google Scholar 

  78. Y. Matsumoto, K. Ohmori, and M. Fujiwara, “Microglial and astroglial reactions to inflammatory lesions of experimental autoimmune encephalomyelitis in the rat central nervous system,” J. Neuroimmunol., 37, Nos. 1/2, 23-33 (1992).

    Article  CAS  PubMed  Google Scholar 

  79. X. Liu, D-L. Yao, C. A. Bondy, et al., “Insulin-like growth factor I treatment reduces clinical deficits and lesion severity in acute demyelinating experimental autoimmune encephalomyelitis,” Mult. Scler., 1, No. 1, 2-9 (1995).

    CAS  PubMed  Google Scholar 

  80. C Fressinaud and J. M. Vallat, “Basic fibroblast growth factor improves recovery after chemically induced breakdown of myelin-like membranes in pure oligodendrocyte cultures,” J. Neurosci. Res., 38, No. 2, 202-213(1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Pivneva.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 41, No. 5, pp. 429-437, September-October, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivneva, T.A. Mechanisms Underlying the Process of Demyelination in Multiple Sclerosis. Neurophysiology 41, 365–373 (2009). https://doi.org/10.1007/s11062-010-9114-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-010-9114-z

Keywords

Navigation