Skip to main content
Log in

Stabilization of motor asymmetry in the goldfish under the influence of optokinetic stimulation

  • Published:
Neurophysiology Aims and scope

Adaptation as a memory model appears, at the cellular level, as an increase in the resistivity of neurons to fatigue under the influence of repetitive natural training stimulation. Selective induction of adaptational changes in separate compartments of one and the same neuron can also serve as an important instrument for identification of the roles of these compartments in the integrative function of the individual neuron. Mauthner neurons (MNs) of fishes (the goldfish in particular) possess a clearly differentiated soma and two dendrites, lateral and ventral ones. The soma and lateral dendrite of each MN receive afferentation from the ipsilateral vestibular apparatus; at present, the functional and morphological aspects of selective adaptational modifications induced in these compartments by adequate vestibular stimulation have been examined in detail. As to the ventral MN dendrite receiving visual afferentation from the contralateral eye via the ipsilateral tectum, it remained impossible until now to realize the respective approach. We found that training sessions of visual optokinetic stimulation performed in certain modes provide selective activation of one MN through its ventral dendrite and increase the resistivity of this cell to fatiguing stimulation. Therefore, we first demonstrated the possibility of adaptational changes in an individual ventral dendrite of the MN. If fishes were preliminarily adapted with respect to vestibular stimulation, and the resistivity of the soma and lateral dendrite was selectively increased, the resistivity to fatiguing visual test stimulation also increased. On the other hand, if fishes were preliminarily adapted with respect to visual stimulation, the resistivity to fatiguing vestibular stimulation also increased. The observed increase in the resistivity of MNs of fishes adapted due to sensory stimulation of one afferent input with respect to sensory stimulation of other sensory input, as well as an increase in the resistivity to sensory stimulation of one modality, probably show that the mechanism of increase in the resistivity is the same in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Moshkov, Adaptation and Ultrastructure of Neurons [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  2. R. Fremont and M. Hale, “Building neural networks: The response of the zebrafish startle circuit to ectopic Mauthner cells,” Chicago Biol. Invest., 3, Issue 2, 43–46 (2006).

    Google Scholar 

  3. S. J. Zottoli, A. R. Hordes, and D. S. Faber, “Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell,” Brain Res., 401, No. 1, 113–121 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. L. I. Zhang, H. W. Tao, and M. Poo, “Visual input induces long-term potentiation of developing retinotectal synapses,” Nat. Neurosci., 3, No. 7, 708–715 (2000).

    Article  PubMed  CAS  Google Scholar 

  5. S. A. Weiss, S. J. Zottoli, S. C. Do, et al., “Correlation of the C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus),” J. Exp. Biol., 209, No. 23, 4788–4801 (2006).

    Article  PubMed  Google Scholar 

  6. R. L. Roth, “Decussation geometries in the goldfish nervous system: Correlation with probability of survival,” Proc. Natl. Acad. Sci. USA, 76, No. 8, 4131–4135 (1979).

    Article  PubMed  CAS  Google Scholar 

  7. G. Z. Mikhailova, A. V. Arutyunyan, I. M. Santalova, et al., “Asymmetry of motor behavior of the goldfish in a narrow channel,” Neurophysiology, 37, No. 1, 48–57 (2005).

    Article  Google Scholar 

  8. G. Z. Mikhailova, V. D. Pavlik, N. R. Tiras, and D. A. Moshkov, “Correlation of the dimension of Mauthner neurons with the preference of the goldfish to make rightward or leftward turnings,” Morfologiya, 127, No. 2, 16–19 (2005).

    CAS  Google Scholar 

  9. G. Z. Mikhailova, N. R. Tiras, V. D. Pavlik, et al., “Morphological parameters of Mauthner neurons of goldfish with modified asymmetry of motor behavior,” Neurophysiology, 38, No. 1, 15–26 (2006).

    Article  Google Scholar 

  10. N. R. Tiras, G. Z. Mikhailova, and D. A. Moshkov, “Effects induced by an actin-polymerizing peptide in goldfish Mauthner neurons,” Neurophysiology, 38, Nos. 5/6, 327–337 (2006).

    Article  CAS  Google Scholar 

  11. G. Z. Mikhailova, N. R. Tiras, E. E. Grigor'yeva, and D. A. Moshkov, “Rotational stimulation-related changes of the motor asymmetry in the goldfish,” Neurophysiology, 37, Nos. 5/6, 379–387 (2005).

    Article  Google Scholar 

  12. R. Sh. Shtanchayev, G. Z. Mikhailova, N. Yu. Dektyareva, et al., “Effects of optokinetic stimulation on motor asymmetry in the goldfish,” Neurophysiology, 39, No. 2, 118–129 (2007).

    Article  Google Scholar 

  13. R. Sh. Stanchayev, G. Z. Mikhailova, N. Yu. Dektyareva, et al., “Changes in the ventral dendrite of goldfish Mauthner neuron under the action of optokinetic stimulation,” Morfologiya, 132, No. 6, 29–34 (2007).

    Google Scholar 

  14. I. B. Mikheeva, N. R. Tiras, D. A. Moshkov, et al., “Desmosoma-like contacts as targets for the action of Scorpio venom,” Tsitologiya, 42, No. 7, 635–646 (2000).

    CAS  Google Scholar 

  15. G. V. Sunanda, B. S. Rao, and T. R. Raju, “Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons — a quantitative study,” Brain Res., 694, 312–317 (1995).

    Article  PubMed  CAS  Google Scholar 

  16. E. N. Star, D. J. Kwiatkowski, and V. N. Murthy, “Rapid turnover of actin in dendritic spines and its regulation by activity,” Nat. Neurosci., 5, No. 3, 239–246 (2002).

    Article  PubMed  CAS  Google Scholar 

  17. I. Segev, “Sound grounds for computing dendrites,” Nature, 393, 207–208 (1995).

    Article  Google Scholar 

  18. H. Agmon-Snir, C. E. Carr, and J. Rinzel, “The role of dendrites in auditory coincidence detection,” Nature, 393, 268–272 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. A. Mizrahi and F. Libersat, “Afferent input regulates the formation of distal dendritic branches,” J. Comp. Neurol., 452, 1–10 (2002).

    Article  PubMed  Google Scholar 

  20. Ch. T. Kuo, L. Y. Jan, and Y. N. Jan, “Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling,” Proc. Natl. Acad. Sci. USA, 102, No. 42, 15230–15235 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. K. Haas, J. Li, and H. T. Cline, “AMPA receptors regulate experience-dependent dendritic arbor growth in vivo,” Proc. Natl. Acad. Sci. USA, 103, No. 32, 12127–12131 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. E. N. Bezgina, D. A. Moshkov, V. A. Nikitin, et al., “Morphogenesis of Mauthner neurons of Xenopus tadpoles under conditions of early unilateral enucleation of the eye,” Morfologiya, 115, No. 3, 49–52 (1999).

    CAS  Google Scholar 

  23. Y. Zuo, G. Yang, E. Kwon, and W.-B. Gan, “Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex,” Nature, 436, 261–265 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. A. C. Horton and M. D. Ehlers, “Secretory trafficking in neuronal dendrites,” Nat. Cell Biol., 6, No. 7, 585–591 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Z. Li, K.-I. Okamoto, Y. Hayashi, and M. Sheng, “The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses,” Cell, 119, 873–887 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. A. V. Samsonovich and G. A. Ascoli, “Morphological homeostasis in cortical dendrites,” Proc. Natl. Acad. Sci. USA, 103, No. 5, 1569–1574 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. J. Makarova, J. M. Ibarz, S. Canals, and O. Herreras, “A steady-state model of spreading depression predicts the importance of an unknown conductance in specific dendritic domains,” Biophys. J., 92, 4216–4232 (2007).

    Article  PubMed  CAS  Google Scholar 

  28. J. M. Bekkers and M. Hausser, “Targeted dendrotomy reveals active and passive contributions of the dendritic tree to synaptic integration and neuronal output,” Proc. Natl. Acad. Sci. USA, 104, No. 27, 11447–11452 (2007).

    Article  PubMed  CAS  Google Scholar 

  29. D. A. Moshkov, L. L. Pavlik, N. R. Tiras, et al., “Ultrastructural changes in the mixed synapses of Mauthner neurons related to long-term potentiation and natural modification of the motor function,” Neurophysiology, 35, No. 5, 361–370 (2003).

    Article  Google Scholar 

  30. E. N. Bezgina, L. L. Pavlik, G. Z. Mikhailova, et al., “Morphofunctional effects of applications of glutamate and dopamine on the goldfish Mauthner neurons,” Neurophysiology, 38, No. 4, 267–276 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Dektyareva.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 211–220, May–June, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dektyareva, N.Y., Shtanchayev, R.S., Mikhailova, G.Z. et al. Stabilization of motor asymmetry in the goldfish under the influence of optokinetic stimulation. Neurophysiology 40, 178–186 (2008). https://doi.org/10.1007/s11062-008-9034-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9034-3

Keywords

Navigation