Skip to main content
Log in

Correlations between indices of P300 EEG potential, cognitive tests, and variational pulsometry in Parkinsonian patients

  • Published:
Neurophysiology Aims and scope

Abstract

The parameters of an event-related EEG potential (ERP), P300 wave, are now extensively used as objective neurophysiological indices of the state of cognitive functions. At the same time, information on the effects of the autonomic nervous system on the parameters of P300 is limited. In Parkinson’s disease clinics, in addition to the leading motor disorders, more or less clear psychoemotional, cognitive, and autonomic (in particular cardiovascular) impairments are usually observed. This allows one to study the dependence between the cardiovascular dysfunction and intensity of cognitive disorders in Parkinsonian patients. In our study on this contingent, we analyzed correlations between the parameters of P300 potential, indices of the state of the cognitive sphere (determined using a questionnaire, Mini Mental State Examination, MMSE, and a Luriya’s test), and indices of variational pulsometry. Thirty-five Parkinsonian patients (49 to 74 years, severity of disease 1.5 to 3.0 by the international classification) were examined. We found a negative influence of excessive sympathetic tonus in cardiovascular control on the state of cognitive functions. The latency of P300 potential was longer in patients with greater intensities of sympathetic influences on the cardiovascular system. The coefficients of correlation of the latency of P300 with the amplitude of mode of R-R intervals (AMo), index of tension in the regulatory systems by Baevskii (IT), and index of autonomic balance by Baevskii (IAB) were 0.52 (P < 0.01), 0.36 (P < 0.05), and 0.37 (P < 0.05), respectively. The above autonomic indices demonstrated significant negative correlations with the volume of short-term memory measured by Luriya’s test. The P300 latency, in turn, showed negative correlations with the memory volume estimated by the MMSE scale and Luriya’s test. With increase in the age of patients, the degree of the above-mentioned correlations between the P300 latency, memory volume (by Luriya’s test), and parameters of variational pulsometry increased. Our data emphasize the expedience of “routine” studies of the balance of sympathetic and parasympathetic control in pathological states accompanied by clear or subclinical cognitive disorders. Early recognition of cardiovascular dysfunction and its corresponding therapeutic correction should improve the state of brain functions and quality of life in patients suffering from neurodegenerative diseases, in particular from Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. T. Liberson, “Contributions to the history of the discovery of P300,” Electromyogr. Clin. Neurophysiol., 34, No. 1, 53–57 (1994).

    PubMed  CAS  Google Scholar 

  2. T. W. Picton, “The P300 wave of the human event-related potential,” J. Clin. Neurophysiol., 9, No. 4, 456–479 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. J. Brankack, T. Seidenbecher, and H. W. Muller-Gartner, “Task-relevant late positive component it rats: is it related to hippocampal theta rhythm,” Hippocampus, 6, No. 5, 475–482 (1996).

    Article  PubMed  CAS  Google Scholar 

  4. M. Fushimi, N. Matsubuchi, and A. Sekine, “Progression of P300 in a patient with bilateral hippocampal lesions,” Clin. Neurophysiol., 116, No. 3, 625–631 (2005).

    Article  PubMed  Google Scholar 

  5. P. Stanzione, F. Fattapposta, P. Giunti, et al., “P300 variations in parkinsonian patients before and during dopaminergic monotherapy: a suggested dopamine component in P300,” Electroencephalogr. Clin. Neurophysiol., 80, No. 5, 446–453 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. Z. Katsarou, S. Bostantjopoulou, V. Kimiskidis, et al., “Auditory event-related potentials in Parkinson’s disease in relation to cognitive ability,” Percept. Mot. Skills, 98, Part 2, No. 3, 1441–1448 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. V. Molina, J. Sanz, F. Munoz, et al., “Dorsolateral prefrontal cortex contribution to abnormalities of the P300 component of the event-related potential in schizophrenia,” Psychiat. Res., 140, No. 1, 17–26 (2005).

    Article  Google Scholar 

  8. S. Araki, H. Sato, K. Yokoyama, and K. Murata, “Subclinical neurophysiological effects of lead: A review on peripheral, central, and autonomic nervous system effects in lead workers,” Am. J. Ind. Med., 37, No. 2, 193–204 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. V. V. Zakharov, “Cognitive disorders in Parkinson’s disease,” Consilium-Medicum, 7, No. 8, 1–8 (2005).

    Google Scholar 

  10. N. N. Koberskaya, L. R. Zenkov, and N. N. Yakhno, “Cognitive potential P300 in Parkinson’s disease,” Korsakov Zh. Nevrol. Psikhiat., 103, No. 8, 42–49 (2003).

    Google Scholar 

  11. K. J. Chen, R. T. Lin, C. K. Liu, et al., “Relationship between event-related potentials and frontal-subcortical dysfunction in Parkinson’s disease,” Parkinson. Relat. Disord, 12, No. 7, 453–458 (2006).

    Article  CAS  Google Scholar 

  12. T. H. Haapaniemi, V. Pursiainen, J. T. Korpelainen, et al., “Ambulatory ECG and analysis of heart rate variability in Parkinson’s disease,” J. Neurol., Neurosurg., Psychiat., 70, No. 3, 305–310 (2001).

    Article  CAS  Google Scholar 

  13. M. Kallio, T. Haapaniemi, J. Turkka, et al., “Heart rate variability in patients with untreated Parkinson’s disease,” Eur. J. Neurol., 7, No. 6, 667–672 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. S. P. Moskovko, “Heart rate variability in Parkinson’s disease and parkinsonian syndrome,” Biomed. Biosoc. Anthropol., No. 5, 14–18 (2005).

  15. V. L. Golubev, Ya. I. Levin, and A. M. Vein, Parkinson’s Disease and Parkinsonian Syndrome [in Russian], MENDpress, Moscow (1999).

    Google Scholar 

  16. M. M. Hoehn and M. D. Yahr. “Parkinsonism: onset, progression and mortality,” Neurology, 17, 427–442 (1967).

    Article  PubMed  CAS  Google Scholar 

  17. M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini-mental state. A practical method for grading the cognitive state of patients for the clinician,” J. Psychiat. Res., 12, 189–198 (1975).

    Article  PubMed  CAS  Google Scholar 

  18. A. R. Luriya, Bases of Neuropsychology [in Russian], Publishing House of Moscow State Univ., Moscow (1973).

    Google Scholar 

  19. S. P. Moskovko, V. M. Ioltukhovskii, G. S. Moskovko, M. P. Kostenko, “Standardization of the technique of computer variational pulsometry with the aim of estimation of the state of autonomic control,” Visn. Vin. State Med. Univ., 4, No. 1, 238–239 (2000).

    Google Scholar 

  20. R. M. Baevskii, O. I. Kirillov, and S. Z. Kletskin, Mathematical Analysis of Changes in Cardiac Rhythm under Stress Conditions [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  21. V. B. Shatilo and I. A. Antonyuk-Shchelova, “Dependence of reaction of cardiovascular system to psychoemotional stress influence on the initial state of autonomic control in humans turned old age,” Probl. Stareniya Dolgoletiya, 4, Nos. 3/4, 347–355 (1994).

    Google Scholar 

  22. G. F. Lakin, Biometrics [in Russian], Vysshaya Shkola, Moscow (1984).

    Google Scholar 

  23. G. Amabile, F. Fattapposta, F. Pierelli, et al., “Endogenous evoked potentials and vigilance levels variations,” Funct. Neurol., 2, No. 4, 523–527 (1987).

    PubMed  CAS  Google Scholar 

  24. L. Deecke, “Clinical neurophysiology of Parkinson’s disease. Bereitschaftspotential and contingent negative variation,” Adv. Neurol., 86, 257–271 (2001).

    PubMed  CAS  Google Scholar 

  25. E. P. Lekhanina, I. N. Karaban’, Yu. A. Burenok, et al., “Two phases of conventional negative wave in human: relation to motor and mental functions,” Sechenov Ross, Fiziol. Zh., 91, No. 4, 364–373 (2005).

    Google Scholar 

  26. V. V Frol’kis, S. G. Burchinskii, and Yu. E. Rushkevich, “Age-related prerequisites of the development of parkinsonism,” Korsakov Zh. Nevrol. Psikhiat., 88, No. 9, 137–145 (1988).

    CAS  Google Scholar 

  27. V. V. Zakharov, N. V. Yaroslavtseva, and N. N. Yakhno, “Cognitive impairment in Parkinson’s disease,” Nevrol. Zh., 8, No. 2, 11–16 (2003).

    Google Scholar 

  28. G. Levy, M.-X. Tang, L. J. Cote, et al., “Motor impairment in PD: Relationship to incident dementia and age,” Neurology, 55, No. 4, 539–544 (2000).

    PubMed  CAS  Google Scholar 

  29. D. Muslimovic, B. Post, J. D. Speelman, and B. Schmand, “Cognitive profile of patients with newly diagnosed Parkinson disease,” Neurology, 65, No. 8, 1239–1245 (2005).

    Article  PubMed  Google Scholar 

  30. R. M. Zweig, W. R. Jankel, J. C. Hedreen, et al., “The pedunculopontine nucleus in Parkinson’s disease,” Ann. Neurol., 26, No. 1, 41–46 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. C. Zarow, S. A. Lyness, J. A. Mortimer, and H. C. Chui, “Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases,” Arch. Neurol., 60, No. 3, 337–341 (2003).

    Article  PubMed  Google Scholar 

  32. E. A. Alimova and V. L. Golubev, “Autonomic disorders in parkinsonism,” Korsakov Zh. Nevrol. Psikhiat., 92, No. 5, 48–52 (1992).

    Google Scholar 

  33. H. Takahashi and K. Wakabayashi, “Controversy: is Parkinson’s disease a single disease entity? Yes,” Parkinson. Relat. Disord., 11, Suppl. 1, 31–37 (2005).

    Article  Google Scholar 

  34. G. Micieli, P. Tosi, S. Marcheselli, and A. Cavallini, “Autonomic dysfunction in Parkinson’s disease,” Neurol. Sci., 24, Suppl. 1, 32–34 (2003).

    Article  Google Scholar 

  35. H. Oka, S. Mochio, K. Onouchi, et al., “Cardiovascular dysautonomia in de novo Parkinson’s disease,” J. Neurol. Sci., 241, Nos. 1/2, 59–65 (2006).

    Article  PubMed  Google Scholar 

  36. I. V. Litvnenko, Parkinson’s Disease [in Russian], Miklosh, Moscow (2006).

    Google Scholar 

  37. S. Saiki, G. Hirose, K. Sakai, et al., “Cardiac 1231-MIBG scintigraphy can assess the disease severity and phenotype of PD,” J. Neurol. Sci., 220, Nos. 1/2, 105–111 (2004).

    Article  PubMed  Google Scholar 

  38. D. S. Goldstein, Y. Sharabi, B. I. Karp, et al., “Cardiac sympathetic denervation preceding motor signs in Parkinson disease,” Clin. Auton. Res., 17, No. 2, 118–121 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Lukhanina.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 43–52, January–February, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukhanina, E.P., Mel’nik, N.A., Berezetskaya, N.M. et al. Correlations between indices of P300 EEG potential, cognitive tests, and variational pulsometry in Parkinsonian patients. Neurophysiology 40, 39–47 (2008). https://doi.org/10.1007/s11062-008-9016-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-008-9016-5

Keywords

Navigation