Skip to main content
Log in

Non-quantal secretion of acetylcholine from motor nerve endings: Molecular mechanisms, physiological role, and regulation

  • Published:
Neurophysiology Aims and scope

Abstract

Results of biochemical and electrophysiological experiments allowing researchers to identify non-quantal release of acetylcholine (ACh), in addition to quantal release, from motor nerve endings, are discussed in the lecture. Based on the analysis of our own data and publications of other experimenters on the dependence of non-quantal secretion on the composition of the ion milieu, sensitivity of this phenomenon to different physiologically active compounds, and peculiarities of its temperature dependence, the authors conclude that non-quantal secretion of the transmitter is an active transport process, and not a passive leakage of ACh from the cytoplasm of the nerve terminal. It is hypothesized that a high-affinity system of choline uptake can play the role of the ACh carrier through the presynaptic membrane. The involvement of non-quantal release in the control of electrogenesis in the muscle fiber and the relation between processes of quantal and non-quantal secretion of the transmitter providing adequate functioning of the nerve terminal in the resting state and in the course of long-lasting high-frequency rhythmic activity are described. Data on the ability of glutamate and nitric oxide to selectively modulate this type of neurosecretion are analyzed. The possible role of non-quantal secretion of ACh in pathogenesis of intoxications of ACh esterase is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Van der Kloot and J. Molgo, “Quantal acetylcholine release at the vertebrate neuromuscular junction,” Physiol. Rev., 74, 899–991 (1994).

    PubMed  Google Scholar 

  2. W. Van der Kloot, “Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction,” Prog. Neurobiol., 71, 269–303 (2003).

    Article  PubMed  CAS  Google Scholar 

  3. M. Israel and Y. Dunant, “Acetylcholine release. Reconstitution of the elementary quantal mechanism,” J. physiol., 92, 123–128 (1998).

    CAS  Google Scholar 

  4. R. L. Ruff, “Neurophysiology of the neuromuscular junction: overview,” Ann. N.Y. Acad. Sci., 998, 1–10 (2003).

    Article  PubMed  CAS  Google Scholar 

  5. S. J. Wood and C. R. Slater, “Safety factor at the neuromuscular junction,” Prog. Neurobiol., 64, 393–429 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. A. L. Zefirov, “Vesicular cycle in the presynaptic nerve terminal,” Sechenov Ross. Fiziol. Zh., 93, 544–562 (2007).

    CAS  Google Scholar 

  7. J. F. Mitchell and A. Silver, “The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat,” J. Physiol., 165, 117–129 (1963).

    PubMed  CAS  Google Scholar 

  8. P. Fletcher and T. Forrester, “The effect of curare on the release of acetylcholine from mammalian motor nerve terminals and an estimate of quantum content,” J. Physiol., 251, 131–144 (1975).

    PubMed  CAS  Google Scholar 

  9. K. Krnjevic and D. W. Straughan, “The release of acetylcholine from the denervated rat diaphragm,” J. Physiol., 170, 371–378 (1964).

    PubMed  CAS  Google Scholar 

  10. L. T. Potter, “Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles,” J. Physiol., 206, 145–166 (1970).

    PubMed  CAS  Google Scholar 

  11. V. Dolezal and S. Tucek, “The synthesis and release of acetylcholine in normal and denervated rat diaphragms during incubation in vitro,” J. Physiol., 334, 461–474 (1983).

    PubMed  CAS  Google Scholar 

  12. V. Dolezal and S. Tucek, “Effects of tetrodotoxin, Ca2+ absence, d-tubocurarine and vesamicol on spontaneous acetylcholine release from rat muscle,” J. Physiol., 458, 1–9 (1992).

    PubMed  CAS  Google Scholar 

  13. P. C. Molenaar and R. L. Polak, “Acetylcholine synthesizing enzymes in frog skeletal muscle,” J. Neurochem., 35, 1021–1025 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. S. Tucek, “The synthesis of acetylcholine in skeletal muscles of the rat,” J. Physiol., 322, 53–69 (1982).

    PubMed  CAS  Google Scholar 

  15. B. Katz and R. Miledi, “Transmitter leakage from motor nerve endings,” Proc. Roy. Soc. Ser. B, 196, 59–72 (1977).

    Article  CAS  Google Scholar 

  16. F. Vyskocil and P. Illes, “Non-quantal release of transmitter at mouse neuromuscular junction and its dependence on the activity of Na+-K+ ATP-ase,” Pflügers Arch., 370, 295–297 (1977).

    Article  PubMed  CAS  Google Scholar 

  17. F. Vyskocil, E. Nikolsky, and C. Edwards, “An analysis of the mechanisms underlying the non-quantal release of acetylcholine at the mouse neuromuscular junction,” Neuroscience, 9, 429–435 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. C. Edwards, V. Dolezal, S. Tucek, et al., “A possible role for the acetylcholine transport system in non-quantal release of acetylcholine at the rodent myoneural junction,” Puerto Rico Health Sci. J., 7, 71–74 (1988).

    CAS  Google Scholar 

  19. F. Vyskocil and G. Vrbova, “Non-quantal release of acetylcholine affects polyneuronal innervation on developing rat muscle fibers,” Eur. J. Neurosci., 5, 1677–1683 (1993).

    Article  PubMed  CAS  Google Scholar 

  20. Y. L. Shih, “Abolishment of non-quantal release of acetylcholine from the mouse phrenic nerve endings by toosendanin,” Jpn. J. Physiol., 36, 601–605 (1986).

    Article  PubMed  CAS  Google Scholar 

  21. V. Dolezal, F. Vyskocil, and S. Tucek, “Decrease of the spontaneous non-quantal release of acetylcholine from the phrenic nerve in botulinum-poisoned rat diaphragm,” Pflügers Arch., 397, 319–322 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. E. E. Nikolsky, V. A. Voronin, T. I. Oranska, and F. Vyskocil, “The dependence of non-quantal acetylcholine release on the choline-uptake system in the mouse diaphragm,” Pflügers Arch., 418, 74–78 (1991).

    Article  PubMed  CAS  Google Scholar 

  23. E. E. Nikolsky, T. I. Oranska, and F. Vyskocil, “Non-quantal acetylcholine release in the mouse diaphragm after phrenic nerve crush and during recovery,” Exp. Physiol., 81, 341–348 (1996).

    PubMed  CAS  Google Scholar 

  24. D. C. Linden, M. W. Newton, A. D. Grinell, and D. J. Jenden, “Rapid decline in acetylcholine release and content of rat extensor longus muscle after denervation,” Exp. Neurol., 81, 613–626 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. E. E. Nikolsky, T. I. Oranska, and F. Vyskocil, “Non-quantal acetylcholine release after cholinesterase inhibition in vivo,” Physiol. Res., 41, 333–334, (1992).

    PubMed  CAS  Google Scholar 

  26. Y.-A. Sun and M.-m. Poo, “Non-quantal release of acetylcholine at a developing neuromuscular synapse in culture,” J. Neurosci., 5, 634–642 (1985).

    PubMed  CAS  Google Scholar 

  27. J. Minic, J. Molgo, E. Karlsson, and E. Krejci, “Regulation of acetylcholine release by muscarinic receptors at the mouse neuromuscular junction depends on the activity of acetylcholinesterase,” Eur. J. Neurosci., 15, 439–448 (2002).

    Article  PubMed  Google Scholar 

  28. B. Katz and R. Miledi, “Does the motor nerve impulse evoke ‘non-quantal’ transmitter release?” Proc. Roy. Soc. Ser. B, 212, 131–137 (1981).

    CAS  Google Scholar 

  29. F. Vyskocil and P. Illes, “Electrophysiological examination of transmitter release in non-quantal form in the mouse diaphragm and the activity of membrane ATP-ase,” Physiol. Bohemoslov., 27, 449–455 (1978).

    PubMed  CAS  Google Scholar 

  30. D. O. Smith, “Acetylcholine storage, release and leakage at the neuromuscular junction of mature adult and aged rats,” J. Physiol., 347, 161–176 (1984).

    PubMed  CAS  Google Scholar 

  31. E. E. Nikolsky, V. A. Voronin, and F. Vyskocil, “Kinetic differences in the effect of calcium on quantal and non-quantal acetylcholine release at the murine diaphragm,” Neurosci. Lett., 123, 192–194 (1991).

    Article  PubMed  CAS  Google Scholar 

  32. H. Zemkov and F. Vyskocil, “Effect of Mg2+ on non-quantal acetylcholine release at the mouse neuromuscular junction,” Neurosci. Lett., 103, 293–297 (1989).

    Article  Google Scholar 

  33. E. E. Nikol’skii and V. A. Voronin, “Temperature dependences of the processes of spontaneous quantal and non-quantal transmitter release from motor nerve endings of the mice,” Neirofiziologiya, 18, 361–367 (1986).

    CAS  Google Scholar 

  34. C. Edwards, V. Dolezal, S. Tucek, et al., “Is an acetylcholine transport system responsible for nonquantal release of acetylcholine at the rodent myoneural junction?” Proc. Natl. Acad. Sci. USA, 82, 3514–3518 (1985).

    Article  PubMed  CAS  Google Scholar 

  35. F. Vyskocil, “Inhibition of non-quantal acetylcholine leakage by 2(4-phenylpiperidine)cyclohexanol in the mouse diaphragm,” Neurosci. Lett., 59, 277–280 (1985).

    Article  PubMed  CAS  Google Scholar 

  36. J. J. Bray, J. W. Forrest, and J. I. Hubbard, “Evidence for the role of non-quantal acetylcholine in the maintenance of the membrane potential of rat skeletal muscle,” J. Physiol., 326, 285–296 (1982).

    PubMed  CAS  Google Scholar 

  37. A. Urazaev, N. Naumenko, A. Malomough, et al., “Carbachol and acetylcholine delay the early postdenervation depolarization of muscle fibres through Mcholinergic receptors,” Neurosci. Res., 37, 255–263 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. A. Kh. Urazaev, N. V. Naumenko, G. I. Poletaev, et al., “Acetylcholine and carbachol prevent muscle depolarization in denervated rat diaphragm,” NeuroReport, 8, 403–406 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. R. A. Khairove, A. I. Malomouzh, N. V. Naumenko, and A. Kh. Urazayev, “Effect of oxotremorine on the resting membrane potential and cellular volume of rat muscle fibers with NO synthase blocked in vivo,” Byull. Éksp. Biol. Med., 135, 140–142 (2003).

    Article  Google Scholar 

  40. F. Vyskocil, “Early postdenervation depolarization is controlled by acetylcholine and glutamate via nitric oxide regulation of the chloride transporter,” Neurochem. Res., 28, 575–585 (2003).

    Article  PubMed  CAS  Google Scholar 

  41. F. Vyskocil, “Action potentials of the rat diaphragm and their sensitivity to tetrodotoxin during postnatal development and old age,” Pflügers Arch., 352, 155–163 (1974).

    Article  PubMed  CAS  Google Scholar 

  42. E. E. Nikolsky, H. Zemkov, V. A. Voronin, and F. Vyskocil, “Role of non-quantal acetylcholine release in surplus polarization of mouse diaphragm fibers at the endplate zone,” J. Physiol., 477, 497–502 (1994).

    PubMed  CAS  Google Scholar 

  43. F. Vyskocil, E. E. Nikolsky, H. Zemkov, and J. Krusek, “The role of non-quantal release of acetylcholine in regulation of postsynaptic membrane electrogenesis,” J. physiol., 89, 157–162 (1995).

    CAS  Google Scholar 

  44. I. I. Krivoi, E. V. Lopatina, and V. V. Kravtsove, “Roles of K+ channels and Na+, K+-ATPase in hyperpolarization of the membrane of skeletal muscle fibers evoked by acetylcholine,” Biol. Membr., 18, 10–15 (2001).

    CAS  Google Scholar 

  45. H. Dlouha, J. Teisinger, and F. Vyskocil, “Activation of membrane Na+/K+-ATPase of mouse skeletal muscle by acetylcholine and its inhibition by alpha-bungarotoxin, curare and atropine,” Pflü gers Arch., 380, 101–104 (1979).

    Article  CAS  Google Scholar 

  46. L. Elfman, E. Heilbronn, and P. L. Jorgensen, “Fractionation of protein components of plasma membranes from the electric organ of Torpedo marmorata,” Biochim. Biophys. Acta, 693, 273–279 (1982).

    Article  PubMed  CAS  Google Scholar 

  47. P. Beguin, A. Beggah, S. Cotecchia, and K. Geering, “Adrenergic, dopaminergic, and muscarinic receptor stimulation leads to PKA phosphorylation of Na-K-ATPase,” Am. J. Physiol., 270, 131–137 (1996).

    Google Scholar 

  48. M. P. Danilenko, M. P. Panchenko, O. V. Yesirev, and V. A. Tkachuk, “Involvement of pertussis-toxin-sensitive G protein in muscarinic-receptor-mediated inhibition of K+-activated 4-nitrophenylphosphatase activity of cardiac sarcolemma,” Eur. J. Biochem., 194, 155–160 (1990).

    Article  PubMed  CAS  Google Scholar 

  49. M. Poo, J. W. Lam, and N. Orida, “Electrophoresis and diffusion in the plane of the cell membrane,” Biophysics, 26, 1–22 (1979).

    CAS  Google Scholar 

  50. S. Lin-Liu, W. R. Adey, and M. Poo, “Migration of cell surface concanavalin A receptors in pulsed electric fields,” Biophys. J., 45, 1211–1217 (1984).

    PubMed  CAS  Google Scholar 

  51. R. A. Giniatullin, R. N. Khazipov, T. I. Oranska, et al., “The effect of non-quantal acetylcholine release on quantal miniature currents at mouse diaphragm,” J. Physiol., 466, 105–114 (1993).

    PubMed  CAS  Google Scholar 

  52. D. P. Matyushkin, Functional Cellular Interactions in the Neuromuscular Apparatus [in Russian], Nauka, Leningrad (1980).

    Google Scholar 

  53. M. R. Mukhtarov, F. Vyskocil, A. K. Urazaev, and E. E. Nikolsky, “Non-quantal acetylcholine release is increased after nitric oxide synthase inhibition,” Physiol. Res., 48, 315–317 (1999).

    PubMed  CAS  Google Scholar 

  54. M. R. Mukhtarov, A. Kh. Urazaev, E. E. Nikolsky, and F. Vyskocil, “Effect of nitric oxide and NO synthase inhibition on nonquantal acetylcholine release in the rat diaphragm,” Eur. J. Neurosci., 12, 980–986 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. A. I. Malomouzh, M. R. Mukhtarov, E. E. Nikolsky, et al., “Glutamate regulation of non-quantal release of acetylcholine in the rat neuromuscular junction,” J. Neurochem., 85, 206–213 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. A. I. Malomouzh, E. E. Nikolsky, E. M. Lieberman, et al., “Effect of N-acetylaspartylglutamate (NAAG) on non-quantal and spontaneous quantal release of acetylcholine at the neuromuscular synapse of rat,” J. Neurochem., 94, 257–267 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. A. I. Malomouzh, M. R. Mukhtarov, E. E. Nikolsky, and F. Vyskocil, “Muscarinic M1 acetylcholine receptors regulate the non-quantal release of acetylcholine in the rat neuromuscular junction via NO-dependent mechanism,” J. Neurochem. (2007) [in press].

  58. Z. Grozdanovic and H. G. Baumgarten, “Nitric oxide synthase in skeletal muscle fibers: a signaling component of the dystrophin-glycoprotein complex,” Histol. Histopathol., 14, 243–256 (1999).

    PubMed  CAS  Google Scholar 

  59. J. S. Stamler and G. Meissner, “Physiology of nitric oxide in skeletal muscle,” Physiol. Rev., 81, 209–237 (2001).

    PubMed  CAS  Google Scholar 

  60. A. I. Malomouzh, A. Kh. Urazayev, and E. E. Nikolskii, “Glutamatergic modulation of neuromuscular transmission in vertebrates,” Sechenov Ross. Fiziol. Zh., 90, 957–967 (2004).

    CAS  Google Scholar 

  61. A. V. Galkin, R. A. Giniatullin, M. R. Mukhtarov, et al., “ATP but not adenosine inhibits nonquantal acetylcholine release at the mouse neuromuscular junction,” Eur. J. Neurosci., 13, 2047–2053 (2001).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Malomouzh or E. E. Nikol’skii.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 352–363, July–October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malomouzh, A.I., Nikol’skii, E.E. Non-quantal secretion of acetylcholine from motor nerve endings: Molecular mechanisms, physiological role, and regulation. Neurophysiology 39, 307–317 (2007). https://doi.org/10.1007/s11062-007-0042-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-007-0042-5

Keywords

Navigation