Skip to main content
Log in

Sodium/calcium selectivity of cloned calcium T-type channels

  • Published:
Neurophysiology Aims and scope

Abstract

We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 µM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Sather and E. W. McCleskey, “Permeation and selectivity in calcium channels,” Annu. Rev. Physiol., 65, 133–159 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. P. G. Kostyuk, S. L. Mironov, and Y. M. Shuba, “Two ion-selecting filters in the calcium channel of the somatic membrane of mollusc neurons,” J. Membr. Biol., 76, 83–93 (1983).

    Article  Google Scholar 

  3. P. Hess and R. W. Tsien, “Mechanism of ion permeation through calcium channels,” Nature, 309, No. 5967, 453–456 (1984).

    Article  PubMed  CAS  Google Scholar 

  4. P. Hess, J. B. Lansman, and R. W. Tsien, “Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells,” J. Gen. Physiol., 88, No. 3, 293–319 (1986).

    Article  PubMed  CAS  Google Scholar 

  5. H. Matsuda and A. Noma, “Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig,” J. Physiol., 357, 553–573 (1984).

    PubMed  CAS  Google Scholar 

  6. R. W. Tsien, P. T. Ellinor, and W. A. Horne, “Molecular diversity of voltage-dependent Ca2+ channels,” Trends Pharmacol. Sci., 12, 349–354 (1991).

    Article  PubMed  CAS  Google Scholar 

  7. E. Perez-Reyes, “Molecular physiology of low-voltage-activated T-type calcium channel,” Physiol. Rev., 83, 117–161 (2003).

    PubMed  CAS  Google Scholar 

  8. A. M. Yunker and M. W. McEnery, “Low-voltage-activated (’T-Type’) calcium channels in review,” J. Bioenerg. Biomembr., 35, No. 6, 533–575 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. J. R. Huguenard and D. A. Prince, “A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus,” J. Neurosci., 12, No. 10, 3804–3817 (1992).

    PubMed  CAS  Google Scholar 

  10. A. N. Tarasenko, P. G. Kostyuk, A. V. Eremin, et al., “Two types of low-voltage-activated Ca2+ channels in neurones of rat laterodorsal thalamic nucleus,” J. Physiol., 499, Part 1, 77–86 (1997).

    PubMed  CAS  Google Scholar 

  11. J. R. Huguenard, “Low-threshold calcium currents in central nervous system neurons,” Annu. Rev. Physiol., 58, 329–348 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. E. Perez-Reyes, L. L. Cribbs, A. Daud, et al., “Molecular characterization of a neuronal low-voltage-activated T-type calcium channel,” Nature, 391, No. 6670, 896–900 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. E. A. Ertel, M. M. Harpold, F. Hofmann, et al., “Nomenclature of voltage-gated calcium channels, ” Neuron, 25, No. 3, 533–535 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. J. H. Lee, J. C. Gomora, L. L. Cribbs, et al., “Nickel block of three cloned T-type calcium channels: low concentrations selectively block alpha1H,” Biophys. J., 77, No. 6, 3034–3042 (1999).

    PubMed  CAS  Google Scholar 

  15. A. K. Shcheglovitov, A. I. Boldyrev, O. P. Lyubnova, et al., “Peculiarities of selectivity of three subtypes of low-threshold T-type calcium channels,” Neurophysiology, 37, No. 4, 277–286 (2005).

    Article  CAS  Google Scholar 

  16. Y. M. Shuba, V. I. Teslenko, A. N. Savchenko, et al., “The effect of permeant ions on single calcium channel activation in mouse neuroblastoma cells: ion-channel interaction,” J. Physiol., 443, 25–44 (1991).

    PubMed  CAS  Google Scholar 

  17. A. K. Sheglovitov, T. I. Zhelay, A. P. Kondratskii, et al., “Comparative analysis of the mechanisms underlying nifedipine-induced blockade of three subtypes of T-type Ca2+ channels,” Neurophysiology, 36, No 2, 93–101 (2004).

    Article  Google Scholar 

  18. K. Jean, G. Bernatchez, H. Klein, et al., “Role of aspartate residues in Ca2+ affinity and permeation of the distal ECaC1,” Am. J. Physiol. Cell Physiol., 282, 665–672 (2002).

    Google Scholar 

  19. I. Favre, E. Moczydlowski, and L. Schild, “On the structural basis for ionic selectivity among Na+, K+, and Ca2+ in the voltage-gated sodium channel,” Biophys. J., 71, No. 6, 3110–3125 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. P. G. Kostyuk and O. A. Krishtal, “Effects of calcium and calcium-chelating agents on the inward and outward current in the membrane of mollusc neurons,” J. Physiol., 270, No. 3, 569–580 (1977).

    PubMed  CAS  Google Scholar 

  21. J. Yang, P. T. Ellinor, W. A. Sather, et al., “Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels,” Nature, 366, No. 6451, 158–161 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. Y. Fukushima and N. Hagiwara, “Currents carried by monovalent cations through calcium channels in mouse neoplastic B lymphocytes,” J. Physiol., 358, 255–284 (1985).

    PubMed  CAS  Google Scholar 

  23. H. D. Lux, E. Carbone, and H. Zucker, “Na+ currents through low-voltage-activated Ca2+ channels of chick sensory neurones: block by external Ca2+ and Mg2+,” J. Physiol., 430, 159–188 (1990).

    PubMed  CAS  Google Scholar 

  24. N. Dascal, T. P. Snutch, H. Lubbert, et al., “Expression and modulation of voltage-gated calcium channels after RNA injection in Xenopus oocytes,” Science, 231, No. 4742, 1147–1150 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. A. Fabiato and F. Fabiato, “Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells,” J. physiol., 75, No. 5, 463–505 (1979).

    CAS  Google Scholar 

  26. B. Hille, “The superfamily of voltage-gated channels,” in: Ion Channels of Excitable Membranes, Sinauer Assoc. Inc., Sunderland (2001), pp. 61–92.

    Google Scholar 

  27. P. T. Ellinor, J. Yang, W. A. Sather, et al., “Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions,” Neuron, 15, No. 5, 1121–1132 (1995).

    Article  PubMed  CAS  Google Scholar 

  28. W. Almers, E. W. McCleskey, and P. T. Palade, “A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions,” J. Physiol., 353, 565–583 (1984).

    PubMed  CAS  Google Scholar 

  29. L. Polo-Parada and S. J. Korn, “Block of N-type calcium channels in chick sensory neurons by external sodium,” J. Gen. Physiol., 109, No. 6, 693–702 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. N. Yamashita, S. Ciani, and S. Hagiwara, “Effects of internal Na+ on the Ca2+ channel outward current in mouse neoplastic B lymphocytes,” J. Gen. Physiol., 96, No. 3, 559–579 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. B. P. Delisle and J. Satin, “Monovalent cations contribute to T-type calcium channel (Cav3.1 and Cav3.2) selectivity,” J. Membrane Biol., 193, No. 3, 185–194 (2003).

    Article  CAS  Google Scholar 

  32. S. H. Heinemann, H. Terlau, W. Stuhmer, et al., “Calcium channel characteristics conferred on the sodium channel by single mutations,” Nature, 356, No. 6368, 441–443 (1992).

    Article  PubMed  CAS  Google Scholar 

  33. C. C. Kuo and P. Hess, “Ion permeation through the L-type Ca2+ channel in rat phaeochromocytoma cells: two sets of ion-binding sites in the pore,” J. Physiol., 466, 629–655 (1993).

    PubMed  CAS  Google Scholar 

  34. W. Almers and E. W. McCleskey, “Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore,” J. Physiol., 353, 585–608 (1984).

    PubMed  CAS  Google Scholar 

  35. R. W. Tsien, P. Hess, E. W. McCleskey, et al., “Calcium channels: mechanisms of selectivity, permeation and block,” Annu. Rev. Biophys. Chem., 16, 265–290 (1987).

    Article  CAS  Google Scholar 

  36. K. Talavera, M. Staes, A. Janssens, et al., “Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca2+ channel alpha(1G),” J. Biol. Chem., 276, No. 49, 45628–45635 (2001).

    Google Scholar 

  37. J. J. Falke, S. K. Drake, A. L. Hazard, et al., “Molecular tuning of ion binding to calcium signalling proteins,” Quart. Rev. Biophys., 27, No. 3, 219–290 (1994).

    Article  CAS  Google Scholar 

  38. Z. P. Feng, J. Hamid, C. Doering, et al., “Amino acid residues outside of the pore region contribute to N-type calcium channel permeation,” J. Biol. Chem., 276, No. 8, 5726–5730 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. X. H. Chen, I. Bezprozvanny, and R. W. Tsien, “Molecular basis of proton block of L-type Ca2+ channels,” J. Gen. Physiol., 108, No. 5, 363–374 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Shcheglovitov.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shcheglovitov, A.K., Shuba, Y.M. Sodium/calcium selectivity of cloned calcium T-type channels. Neurophysiology 38, 149–157 (2006). https://doi.org/10.1007/s11062-006-0038-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-006-0038-6

Keywords

Navigation