Skip to main content
Log in

Gating currents of sodium channels in neurons of the rat trigeminal ganglia

  • Published:
Neurophysiology Aims and scope

Abstract

Using a voltage-clamp technique and intracellular dialysis, gating currents of sodium channels were first recorded and studied in neurons of the rat trigeminal ganglia. The rising phase of gating currents lasted 30 to 70 µsec; these currents decayed in a monoexponential manner with a time constant equal to that for activation of the sodium current. Voltage dependences for the gating charge and sodium conductance were also nearly identical. Analysis of the activation of sodium conductance demonstrated that the power n of the activation variable in the equation used changed from more than 6 to 3 at test potentials of −30 mV and 0 mV, respectively. It is hypothesized that, with a change in the test potential within this voltage range, the cooperativity of activation undergoes a twofold decrease. In the presence of 2 mM caffeine or theophylline in the external solution, curves of the voltage dependence of the gating charge and sodium conductance shifted toward more negative values of the test potential, by 5.4 ± 0.7 mV, the maximum gating charge increased by 8.4 ± 3.2%, and the slope factor for both curves decreased by 9.2 ± 3.4%. Since the above effects were identical for both xanthines and developed under conditions of constant intracellular dialysis, i.e., under conditions where the effect of a change in the intracellular calcium concentration was ruled out, the most probable reason for these effects is a direct action of the tested agents on sodium ion channels, which facilitates the movement of gating charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. M. Armstrong and F. Bezanilla, “Currents related to movement of the gating particles of the sodium channels,” Nature, 242, 459–461 (1973).

    Google Scholar 

  2. W. Almers, “Gating currents and charge movements in excitable membranes,” Rev. Physiol. Biochem. Pharmacol., 82, 96–190 (1978).

    Google Scholar 

  3. F. J. Sigworth, “Voltage gating and ion channels,” Quart. Rev. Biophys., 27, 1–40 (1994).

    Google Scholar 

  4. P. G. Kostyuk, N. S. Veselovsky, and A. Ya. Tsindrenko, “Ionic currents in the somatic membrane of rat dorsal root ganglion neurons. 1. Sodium currents,” Neuroscience, 6, No.12, 2423–2430 (1981).

    Google Scholar 

  5. N. T. Parkhomenko and S. V. Mankevich, “Technique of the study of transmembrane currents of neurons in an automated mode,” Sechenov Fiziol. Zh., 71, No.12, 1638–1640 (1985).

    Google Scholar 

  6. A. L. Goldin, “Resurgence of sodium channel research,” Annu. Rev. Physiol., 63, 871–894 (2001).

    Google Scholar 

  7. P. G. Kostyuk and O. A. Kryshtal, Mechanisms of Electrical Excitability [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  8. I. V. Tabarean and T. Narahashi, “Kinetics of modulation of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels by tetramethrin and deltamethrin,” J. Pharmacol. Exp. Ther., 299, No.3, 988–997 (2001).

    Google Scholar 

  9. F. J. Sigworth, “The variance of sodium current fluctuations at the node of Ranvier,” J. Physiol., 307, No.1, 97–129 (1980).

    Google Scholar 

  10. N. G. Greef and F. J. P. Kuhn, “Variable ratio of permeability to gating charge of rBIIA sodium channels and sodium influx in Xenopus oocytes,” Biophys. J., 79, No.5, 2434–2453 (2000).

    Google Scholar 

  11. N. T. Parkhomenko, L. N. Yatsenko, and A. M. Kuksenok, “Agonistic effects of xanthines on tetrodotoxin-sensitive sodium channels in rat dorsal root ganglion neurons,” Neurophysiology/Neirofiziologiya, 29, Nos.4/5, 334–339 (1997).

    Google Scholar 

  12. C. M. Armstrong and W. F. Gilly, “Fast and slow steps in the activation of sodium channels,” J. Gen. Physiol., 74, No.6, 691–711 (1979).

    Google Scholar 

  13. R. D. Keynes and F. Elinder, “On the slowly rising phase of the sodium gating current in the squid giant axon,” Proc. Roy. Soc. Lond., Ser. B, 265, 255–262 (1998).

    Google Scholar 

  14. Y. Habuchi, H. Tanaka, T. Furukawa, and Y. Tsujimura, “Caffeine induced block of Na+ current in guinea pig single ventricular cells,” Am. J. Physiol., 261, No.6, Part 2, H1855–H1863 (1991).

    Google Scholar 

  15. N. Shirokova and E. Rios, “Caffeine enhances intramembranous charge movement in frog skeletal muscle by increasing cytoplasmic Ca2+ concentration,” J. Physiol., 493, No.2, 341–356 (1996).

    Google Scholar 

  16. J. Leroy, J. M. Lignon, F. Gannier, et al., “Caffeine-induced immobilization of gating charges in isolated guinea-pig ventricular heart cells,” Br. J. Pharmacol., 135, No.3, 721–734 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Parkhomenko.

Additional information

Neirofiziologiya/Neurophysiology, Vol. 36, Nos. 5/6, pp. 370–376, September–December, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyuk, P.G., Parkhomenko, N.T. Gating currents of sodium channels in neurons of the rat trigeminal ganglia. Neurophysiology 36, 325–331 (2004). https://doi.org/10.1007/s11062-005-0026-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-005-0026-2

Keywords

Navigation