Skip to main content
Log in

Detection of tumor-derived cell-free DNA in cerebrospinal fluid using a clinically validated targeted sequencing panel for pediatric brain tumors

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for “liquid biopsy” in pediatric brain tumors.

Methods

CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated.

Results

Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected.

Conclusions

Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

CSF data analysis available by request.

References

  1. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, Barnholtz-Sloan JS (2023) CBTRUS Statistical Report: primary brain and other Central Nervous System tumors diagnosed in the United States in 2016–2020. Neuro Oncol 25(12 Suppl 2):iv1–iv99. https://doi.org/10.1093/neuonc/noad149

    Article  PubMed  Google Scholar 

  2. World Health Organization. Central Nervous System Tumours.WHO Classification of Tumours, 5th Edition, Volume 6 (2021) Lyon, France

  3. Gajjar A, Robinson GW, Smith KS, Lin T, Merchant TE, Chintagumpala M et al (2021) Outcomes by clinical and molecular features in children with medulloblastoma treated with risk-adapted therapy: results of an International Phase III Trial (SJMB03). J Clin Oncol 39(7):822–835. https://doi.org/10.1200/JCO.20.01372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hwang EI, Kool M, Burger PC, Capper D, Chavez L, Brabetz S et al (2018) Extensive Molecular and Clinical Heterogeneity in Patients With Histologically Diagnosed CNS-PNET Treated as a Single Entity: A Report From the Children’s Oncology Group Randomized ACNS0332 Trial. J Clin Oncol 17(34). https://doi.org/10.1200/JCO.2017.76.4720

  5. Cole BL, Anderson M, Leary SES (2017) Targeted sequencing of Malignant Supratentorial Pediatric Brain tumors demonstrates a high frequency of clinically relevant mutations. Pediatr Dev Pathol 21(4):380–388. https://doi.org/10.1177/1093526617743905

    Article  PubMed  Google Scholar 

  6. Kline CN, Joseph NM, Grenert JP, van Ziffle J, Talevich E, Onodera C et al (2017) Targeted next-generation sequencing of pediatric neuro-oncology patients improves diagnosis, identifies pathogenic germline mutations, and directs targeted therapy. Neuro Oncol 19(5):699–709. https://doi.org/10.1093/neuonc/now254

    Article  CAS  PubMed  Google Scholar 

  7. Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF, Schumacher SE et al (2017) Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro Oncol 19(7):986–996. https://doi.org/10.1093/neuonc/now294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parsons DW, Roy A, Yang Y, Wang T, Scollon S, Bergstrom K et al (2016) Diagnostic Yield of Clinical Tumor and Germline Whole-Exome sequencing for children with solid tumors. JAMA Oncol 2(5):616–624. https://doi.org/10.1001/jamaoncol.2015.5699

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cheng G, Yu X, Zhao H, Cao W, Li H, Li Q et al (2020) Complications of stereotactic biopsy of lesions in the sellar region, pineal gland, and brainstem: a retrospective, single-center study. Medicine 99(8):e18572. https://doi.org/10.1097/MD.0000000000018572

    Article  PubMed  PubMed Central  Google Scholar 

  10. Thust SC, van den Bent MJ, Smits M (2018) Pseudoprogression of brain tumors. J Magn Reson Imaging 48(3):571–589. https://doi.org/10.1002/jmri.26171

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stewart CM, Kothari PD, Mouliere F, Mair R et al (2018) The value of cell-free DNA for molecular pathology. J Pathol 244:616–627. https://doi.org/10.1002/path.5048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Paulson V, Konnick EQ, Lockwood CH (2022) When tissue is the issue: expanding cell-free DNA liquid biopsies to supernatants and Nonplasma Biofluids. Clin Lab Med 42(3):485–496. https://doi.org/10.1016/j.cll.2022.05.005

    Article  PubMed  Google Scholar 

  13. Mouliere F, Mair R, Chandrananda D, Marass F, Smith CG, Su J et al (2018) Detection of cell-free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients. EMBO Mol Med 10(12). https://doi.org/10.15252/emmm.201809323

  14. Bettegowda CSM, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, Antonarakis ES, Azad NS, Bardelli A, Brem H et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martinez-Ricarte F, Mayor R, Martinez-Saez E, Rubio-Perez C, Pineda E et al (2018) Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumor DNA from Cerebrospinal Fluid. Clin Cancer Res 24(12):2812–2819. https://doi.org/10.1158/1078-0432.CCR-17-3800

    Article  CAS  PubMed  Google Scholar 

  16. Huang TYPA, Lulla RR et al (2017) Detection of histone H3 mutations in cerebrospinal fluid derived tumor DNA from children with diffuse midline glioma. Acta Neuropathol Commun 5(1):28. https://doi.org/10.1186/s40478-017-0436-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panditharatna E, Kilburn LB, Aboian MS, Kambhampati M et al (2018) Clinically relevant and minimally invasive Tumor Surveillance of Pediatric diffuse midline gliomas using patient-derived Liquid Biopsy. Clin Cancer Res 24(23):5850–5859. https://doi.org/10.1158/1078-0432.CCR-18-1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pritchard CC, Salipante SJ, Koehler K, Smith C, Scroggins S, Wood B et al (2014) Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens. J Mol Diagn 16(1):56–67. https://doi.org/10.1016/j.jmoldx.2013.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cole BL, Lockwood CM, Stasi S, Stevens J, Lee A, Ojemann JG et al (2018) Year 1 in the Molecular Era of Pediatric Brain Tumor diagnosis: application of Universal Clinical targeted sequencing in an unselected cohort of children. JCO Prec Oncol 2:1–13. https://doi.org/10.1200/PO.17.00151

    Article  Google Scholar 

  20. Kuo AJ, Paulson VA, Hempelmann JA, Beightol M, Todhunter S, Colbert BG et al (2020) Validation and implementation of a modular targeted capture assay for the detection of clinically significant molecular oncology alterations. Pract Lab Med 19:e00153. https://doi.org/10.1016/j.plabm.2020.e00153

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stallard S, Savelieff MG, Wierzbicki K, Mullan B, Miklja Z, Bruzek A et al (2018) CSF H3F3A K27M circulating tumor DNA copy number quantifies tumor growth and in vitro treatment response. Acta Neuropathol Commun 6(1):80. https://doi.org/10.1186/s40478-018-0580-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pan C, Diplas BH, Chen X, Wu Y, Xiao X, Jiang L et al (2019) Molecular profiling of tumors of the brainstem by sequencing of CSF-derived circulating tumor DNA. Acta Neuropathol 137(2):297–306. https://doi.org/10.1007/s00401-018-1936-6

    Article  CAS  PubMed  Google Scholar 

  23. Escudero L, Llort A, Arias A, Diaz-Navarro A, Martinez-Ricarte F, Rubio-Perez C et al (2020) Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nat Commun 11(1):5376. https://doi.org/10.1038/s41467-020-19175-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu APY, Smith KS, Kumar R, Paul L, Bihannic L, Lin T et al (2021) Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell 39(11):1519-30 e4. https://doi.org/10.1016/j.ccell.2021.09.012

  25. Izquierdo E, Proszek P, Pericoli G, Temelso S, Clarke M, Carvalho DM et al (2021) Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neurooncol Adv 3(1):vdab013. https://doi.org/10.1093/noajnl/vdab013

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bale TA, Yang SR, Solomon JP, Nafa K, Middha S, Casanova J et al (2021) Clinical experience of Cerebrospinal Fluid-based Liquid Biopsy demonstrates superiority of cell-free DNA over cell Pellet genomic DNA for Molecular Profiling. J Mol Diagn 23(6):742–752. https://doi.org/10.1016/j.jmoldx.2021.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Springer S, Zhang M et al (2015) Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci USA 112(31):9704–9709. https://doi.org/10.1073/pnas.1511694112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dietz MS, Beach CZ, Barajas R, Parappilly MS, Sengupta SK, Baird LC et al (2020) Measure twice: promise of Liquid Biopsy in Pediatric High-Grade Gliomas. Adv Radiat Oncol 5(2):152–162. https://doi.org/10.1016/j.adro.2019.12.008

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun Y, Li M, Ren S, Liu Y, Zhang J, Li S et al (2021) Exploring genetic alterations in circulating tumor DNA from cerebrospinal fluid of pediatric medulloblastoma. Sci Rep 11(1):5638. https://doi.org/10.1038/s41598-021-85178-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller AM, Szalontay L, Bouvier N, Hill K, Ahmad H, Rafailov J et al (2022) Next-generation sequencing of cerebrospinal fluid for clinical molecular diagnostics in pediatric, adolescent and young adult brain tumor patients. Neuro Oncol 24(10):1763–1772. https://doi.org/10.1093/neuonc/noac035

    Article  PubMed  PubMed Central  Google Scholar 

  31. Takayasu T, Shah M, Dono A, Yan Y, Borkar R, Putluri N et al (2020) Cerebrospinal fluid ctDNA and metabolites are informative biomarkers for the evaluation of CNS germ cell tumors. Sci Rep 10(1):14326. https://doi.org/10.1038/s41598-020-71161-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fangusaro J, Onar-Thomas A, Young Poussaint T, Wu S, Ligon AH, Lindeman N et al (2019) Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol 20(7):1011–1022. https://doi.org/10.1016/S1470-2045(19)30277-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ryall S, Tabori U, Hawkins C (2020) Pediatric low-grade glioma in the era of molecular diagnostics. Acta Neuropathol Commun 8(1):30. https://doi.org/10.1186/s40478-020-00902-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC et al (2012) Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123(4):465–472. https://doi.org/10.1007/s00401-011-0922-z

    Article  CAS  PubMed  Google Scholar 

  35. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR et al (2017) Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and diffuse intrinsic pontine glioma. Cancer Cell 32(4):520–. https://doi.org/10.1016/j.ccell.2017.08.017.  37 e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lassaletta A, Zapotocky M, Mistry M, Ramaswamy V, Honnorat M, Krishnatry R et al (2017) Therapeutic and prognostic implications of BRAF V600E in Pediatric Low-Grade Gliomas. J Clin Oncol 35(25):2934–2941. https://doi.org/10.1200/JCO.2016.71.8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Henriksen TV, Reinert T, Christensen E, Sethi H, Birkenkamp-Demtroder K, Gogenur M et al (2020) The effect of surgical trauma on circulating free DNA levels in cancer patients-implications for studies of circulating tumor DNA. Mol Oncol 14(8):1670–1679. https://doi.org/10.1002/1878-0261.12729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Seattle Children’s Pediatric Brain Tumor Research Fund (PBTRF), Brotman Baty Institute (BBI) for Precision Medicine, Ruth L. Kirschstein National Research Service Award Institutional Research Training Grant [T32CA009351].

Author information

Authors and Affiliations

Authors

Contributions

Experimental design: SESL, CL, BC. Experimental implementation: JH, AL, BC, CL, JS, VP. Analysis and interpretation: SESL, RR, EEC, CL, BC, KAK, VP. Manuscript preparation and critical review: All authors.

Corresponding author

Correspondence to Rebecca Ronsley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ronsley, R., Karvonen, K.A., Cole, B. et al. Detection of tumor-derived cell-free DNA in cerebrospinal fluid using a clinically validated targeted sequencing panel for pediatric brain tumors. J Neurooncol 168, 215–224 (2024). https://doi.org/10.1007/s11060-024-04645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-024-04645-y

Keywords

Navigation