Skip to main content

Advertisement

Log in

Preoperative assessment of eloquence in neurosurgery: a systematic review

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background and objectives

Tumor location and eloquence are two crucial preoperative factors when deciding on the optimal treatment choice in glioma management. Consensus is currently lacking regarding the preoperative assessment and definition of eloquent areas. This systematic review aims to evaluate the existing definitions and assessment methods of eloquent areas that are used in current clinical practice.

Methods

A computer-aided search of Embase, Medline (OvidSP), and Google Scholar was performed to identify relevant studies. This review includes articles describing preoperative definitions of eloquence in the study’s Methods section. These definitions were compared and categorized by anatomical structure. Additionally, various techniques to preoperatively assess tumor eloquence were extracted, along with their benefits, drawbacks and ease of use.

Results

This review covers 98 articles including 12,714 participants. Evaluation of these studies indicated considerable variability in defining eloquence. Categorization of these definitions yielded a list of 32 brain regions that were considered eloquent. The most commonly used methods to preoperatively determine tumor eloquence were anatomical classification systems and structural MRI, followed by DTI-FT, functional MRI and nTMS.

Conclusions

There were major differences in the definitions and assessment methods of eloquence, and none of them proved to be satisfactory to express eloquence as an objective, quantifiable, preoperative factor to use in glioma decision making. Therefore, we propose the development of a novel, objective, reliable, preoperative classification system to assess eloquence. This should in the future aid neurosurgeons in their preoperative decision making to facilitate personalized treatment paradigms and to improve surgical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Brown TJ, Brennan MC, Li M, Church EW, Brandmeir NJ, Rakszawski KL, Patel AS, Rizk EB, Suki D, Sawaya R, Glantz M (2016) Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol 2:1460–1469. https://doi.org/10.1001/jamaoncol.2016.1373

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Jungk C, Krieg SM, Nahed BV, Berger MS, Vincent AJPE (2022) Global comparison of awake and asleep mapping procedures in glioma surgery: an international multicenter survey. Neurooncol Pract 9:123–132. https://doi.org/10.1093/nop/npac005

    Article  PubMed  PubMed Central  Google Scholar 

  3. Skirboll SS, Ojemann GA, Berger MS, Lettich E, Winn HR (1996) Functional cortex and subcortical white matter located within gliomas. Neurosurgery 38:678–684

    Article  CAS  PubMed  Google Scholar 

  4. Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Nahed BV, Berger MS, Vincent AJPE (2022) Safe surgery for glioblastoma: recent advances and modern challenges. Neurooncol Pract 9:364–379. https://doi.org/10.1093/nop/npac019

    Article  PubMed  PubMed Central  Google Scholar 

  5. Molinaro AM, Hervey-Jumper S, Morshed RA et al (2020) Association of maximal extent of resection of contrast-enhanced and non–contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol 6:495–503. https://doi.org/10.1001/jamaoncol.2019.6143

    Article  PubMed  PubMed Central  Google Scholar 

  6. Young JS, Morshed RA, Gogos AJ, Amara D, Villanueva-Meyer JE, Berger MS, Hervey-Jumper SL (2020) The glioma-network interface: a review of the relationship between glioma molecular subtype and intratumoral function. Neurosurgery 87:1078–1084. https://doi.org/10.1093/neuros/nyaa362

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gerritsen JKW, Zwarthoed RH, Kilgallon JL et al (2022) Effect of awake craniotomy in glioblastoma in eloquent areas (GLIOMAP): a propensity score-matched analysis of an international, multicentre, cohort study. Lancet Oncol 23:802–817. https://doi.org/10.1016/S1470-2045(22)00213-3

    Article  PubMed  Google Scholar 

  8. Chacko AG, Thomas SG, Babu KS, Daniel RT, Chacko G, Prabhu K, Cherian V, Korula G (2013) Awake craniotomy and electrophysiological mapping for eloquent area tumours. Clin Neurol Neurosurg 115:329–334. https://doi.org/10.1016/j.clineuro.2012.10.022

    Article  PubMed  Google Scholar 

  9. Müller DMJ, Robe PA, Ardon H et al (2021) Quantifying eloquent locations for glioblastoma surgery using resection probability maps. J Neurosurg 134:1091–1101. https://doi.org/10.3171/2020.1.JNS193049

    Article  Google Scholar 

  10. Gerritsen JKW, Viëtor CL, Rizopoulos D, Schouten JW, Klimek M, Dirven CMF, Vincent AJE (2019) Awake craniotomy versus craniotomy under general anesthesia without surgery adjuncts for supratentorial glioblastoma in eloquent areas: a retrospective matched case-control study. Acta Neurochir 161:307–315. https://doi.org/10.1007/s00701-018-03788-y

    Article  PubMed  Google Scholar 

  11. Gerritsen JKW, Broekman MLD, De Vleeschouwer S, Schucht P, Jungk C, Krieg SM, Nahed BV, Berger MS, Vincent AJPE (2022) Decision making and surgical modality selection in glioblastoma patients: an international multicenter survey. J Neurooncol 156:465–482. https://doi.org/10.1007/s11060-021-03894-5

    Article  PubMed  Google Scholar 

  12. Sawaya R, Hammoud M, Schoppa D, Hess KR, Wu SZ, Shi WM, Wildrick DM (1998) Neurosurgical outcomes in a modern series of 400 craniotomies for treatment of parenchymal tumors. Neurosurgery 42:1044–1056. https://doi.org/10.1097/00006123-199805000-00054

    Article  CAS  PubMed  Google Scholar 

  13. Brodmann K (1909) Die hirnkarte des menschen (Fig. 85 und 86). In: Barth J (ed) Vergleichende lokalisationslehre der grobhirnrinde in ihren prinzipien dargestellt auf grund des Zzllenbaues: Leipzig, pp 130–150

  14. Sagberg LM, Iversen DH, Fyllingen EH, Jakola AS, Reinertsen I, Solheim O (2019) Brain atlas for assessing the impact of tumor location on perioperative quality of life in patients with high-grade glioma: a prospective population-based cohort study. NeuroImage Clin 21:101658. https://doi.org/10.1016/j.nicl.2019.101658

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen XK, Xiao YY, Zheng WB, Chen FY, Wu RH (2006) Functional magnetic resonance mapping of motor cortex in patients with mass lesions near primary motor and sensory cortices. Conf Proc IEEE Eng Med Biol Soc 1:1877–1880. https://doi.org/10.1109/IEMBS.2006.260598

    Article  Google Scholar 

  16. Ferguson SD, McCutcheon IE (2018) Surgical management of gliomas in eloquent cortex. Prog Neurol Surg 30:159–172. https://doi.org/10.1159/000464391

    Article  PubMed  Google Scholar 

  17. Friedlein K, Bozhkov Y, Hore N et al (2015) A new functional classification system (FGA/B) with prognostic value for glioma patients. Sci Rep 5:12373. https://doi.org/10.1038/srep12373

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gupta DK, Chandra PS, Ojha BK, Sharma BS, Mahapatra AK, Mehta VS (2007) Awake craniotomy versus surgery under general anesthesia for resection of intrinsic lesions of eloquent cortex—a prospective randomised study. Clin Neurol Neurosurg 109:335–343. https://doi.org/10.1016/j.clineuro.2007.01.008

    Article  PubMed  Google Scholar 

  19. Mangraviti A, Casali C, Cordella R et al (2013) Practical assessment of preoperative functional mapping techniques: navigated transcranial magnetic stimulation and functional magnetic resonance imaging. Neurol Sci 34:1551–1557. https://doi.org/10.1007/s10072-012-1283-7

    Article  PubMed  Google Scholar 

  20. González-Darder JM, González-López P, Talamantes F, Quilis V, Cortés V, García-March G, Roldán P (2010) Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus 28:5. https://doi.org/10.3171/2009.11.FOCUS09234

    Article  Google Scholar 

  21. Kaspera W, Majchrzak K, Bobek-Billewicz B, Hebda A, Stasik-Pres G, Majchrzak H, Ladziński P, Machowska-Majchrzak A (2013) Reoperations of patients with low-grade gliomas in eloquent or near eloquent brain areas. Neurol Neurochir Pol 47:116–125. https://doi.org/10.5114/ninp.2013.34399

    Article  PubMed  Google Scholar 

  22. Pallud J, Dezamis E (2017) Functional and oncological outcomes following awake surgical resection using intraoperative cortico-subcortical functional mapping for supratentorial gliomas located in eloquent areas. Neurochirurgie 63:208–218. https://doi.org/10.1016/j.neuchi.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  23. Rozumenko A, Kliuchka V, Rozumenko V, Semenova V, Kolesnyk S, Fedorenko Z (2018) Image-guided resection of glioblastoma in eloquent brain areas facilitated by laser surface thermal therapy: clinical outcomes and long-term results. Neurosurg Rev 41:1045–1052. https://doi.org/10.1007/s10143-018-0948-y

    Article  PubMed  Google Scholar 

  24. Jakola AS, Myrmel KS, Kloster R, Torp SH, Lindal S, Unsgård G, Solheim O (2012) Comparison of a strategy favoring early surgical resection vs a strategy favoring watchful waiting in low-grade gliomas. JAMA 308:1881–1888. https://doi.org/10.1001/jama.2012.12807

    Article  CAS  PubMed  Google Scholar 

  25. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, Vogelbaum MA (2014) Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg 121:1115–1123. https://doi.org/10.3171/2014.7.JNS132449

    Article  PubMed  Google Scholar 

  26. Jakola AS, Unsgård G, Myrmel KS, Kloster R, Torp SH, Lindal S, Solheim O (2012) Low grade gliomas in eloquent locations—implications for surgical strategy, survival and long term quality of life. PLoS ONE 7:e51450. https://doi.org/10.1371/journal.pone.0051450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  CAS  PubMed  Google Scholar 

  28. Muir M, Patel R, Traylor J, de Almeida Bastos DC, Prinsloo S, Liu HL, Noll K, Wefel J, Tummala S, Kumar V, Prabhu S (2022) Validation of non-invasive language mapping modalities for eloquent tumor resection: a pilot study. Front Neurosci 16:833073. https://doi.org/10.3389/fnins.2022.833073

    Article  PubMed  PubMed Central  Google Scholar 

  29. Della Puppa A, De Pellegrin S, d’Avella E, Gioffrè G, Rossetto M, Gerardi A, Lombardi G, Manara R, Munari M, Saladini M, Scienza R (2013) 5-aminolevulinic acid (5-ALA) fluorescence guided surgery of high-grade gliomas in eloquent areas assisted by functional mapping. Our experience and review of the literature. Acta Neurochir 155:965–972. https://doi.org/10.1007/s00701-013-1660-x

    Article  PubMed  Google Scholar 

  30. Elliott RE, Rush S, Morsi A, Mehta N, Spriet J, Narayana A, Donahue B, Parker EC, Golfinos JG (2010) Neurological complications and symptom resolution following Gamma Knife surgery for brain metastases 2 cm or smaller in relation to eloquent cortices. J Neurosurg 113:53–64

    Article  PubMed  Google Scholar 

  31. Majchrzak K, Kaspera W, Bobek-Billewicz B, Hebda A, Stasik-Pres G, Majchrzak H, Ładziński P (2012) The assessment of prognostic factors in surgical treatment of low-grade gliomas: a prospective study. Clin Neurol Neurosurg 114:1135–1144. https://doi.org/10.1016/j.clineuro.2012.02.054

    Article  PubMed  Google Scholar 

  32. Mishra A, Janu A, Trivedi K, Shetty P, Singh V, Moiyadi A (2022) Subpial en bloc resection improves extent of resection in infiltrating gliomas—a propensity matched comparative cohort analysis. Clin Neurol Neurosurg 215:107197. https://doi.org/10.1016/j.clineuro.2022.107197

    Article  PubMed  Google Scholar 

  33. Muto J, Dezamis E, Rigaux-Viode O, Peeters S, Roux A, Zanello M, Mellerio C, Sauvageon X, Varlet P, Oppenheim C, Pallud J (2018) Functional-based resection does not worsen quality of life in patients with a diffuse low-grade glioma involving eloquent brain regions: a prospective cohort study. World Neurosurg 113:e200–e212. https://doi.org/10.1016/j.wneu.2018.01.213

    Article  PubMed  Google Scholar 

  34. Pelletier JB, Moiraghi A, Zanello M, Roux A, Peeters S, Trancart B, Edjlali M, Lechapt E, Tauziede-Espariat A, Zah-Bi G, Parraga E, Chretien F, Dezamis E, Dhermain F, Pallud J (2021) Is function-based resection using intraoperative awake brain mapping feasible and safe for solitary brain metastases within eloquent areas? Neurosurg Rev 44:3399–3410. https://doi.org/10.1007/s10143-021-01504-6

    Article  PubMed  Google Scholar 

  35. Zanello M, Goodden JR, Colle H et al (2019) Predictors of epileptic seizures and ability to work in supratentorial cavernous angioma located within eloquent brain areas. Neurosurgery 85:E702–E713. https://doi.org/10.1093/neuros/nyz063

    Article  PubMed  Google Scholar 

  36. Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65:476–483. https://doi.org/10.3171/jns.1986.65.4.0476

    Article  CAS  PubMed  Google Scholar 

  37. Orringer D, Lau D, Khatri S, Zamora-Berridi GJ, Zhang K, Wu C, Chaudhary N, Sagher O (2012) Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg 117:851–859. https://doi.org/10.3171/2012.8.JNS12234

    Article  PubMed  Google Scholar 

  38. Shoubash L, Baldauf J, Matthes M, Kirsch M, Rath M, Felbor U, Schroeder HWS (2021) Long-term outcome and quality of life after CNS cavernoma resection: eloquent vs. non-eloquent areas. Neurosurg Rev 45:649–660. https://doi.org/10.1007/s10143-021-01572-8

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ahsan SA, Chendeb K, Briggs RG, Fletcher LR, Jones RG, Chakraborty AR, Nix CE, Jacobs CC, Lack AM, Griffin DT, Teo C, Sughrue ME (2020) Beyond eloquence and onto centrality: a new paradigm in planning supratentorial neurosurgery. J Neurooncol 146:229–238. https://doi.org/10.1007/s11060-019-03327-4

    Article  PubMed  Google Scholar 

  40. Germanò A, Raffa G, Conti A, Fiore P, Cardali SM, Esposito F, Scibilia A, Quattropani MC, Vinci SL, Marzano G, Pergolizzi S, Longo M, Angileri FF (2019) Modern treatment of brain arteriovenous malformations using preoperative planning based on navigated transcranial magnetic stimulation: a revisitation of the concept of eloquence. World Neurosurg 131:371–384. https://doi.org/10.1016/j.wneu.2019.06.119

    Article  PubMed  Google Scholar 

  41. Wostrack M, Shiban E, Harmening K, Obermueller T, Ringel F, Ryang YM, Meyer B, Stoffel M (2012) Surgical treatment of symptomatic cerebral cavernous malformations in eloquent brain regions. Acta Neurochir 154:1419–1430. https://doi.org/10.1007/s00701-012-1411-4

    Article  PubMed  Google Scholar 

  42. Chang EF, Smith JS, Chang SM, Lamborn KR, Prados MD, Butowski N, Barbaro NM, Parsa AT, Berger MS, McDermott MM (2008) Preoperative prognostic classification system for hemispheric low-grade gliomas in adults. J Neurosurg 109:817–824. https://doi.org/10.3171/JNS/2008/109/11/0817

    Article  PubMed  Google Scholar 

  43. Darvishi P, Batchala PP, Patrie JT, Poisson LM, Lopes MB, Jain R, Fadul CE, Schiff D, Patel SH (2020) Prognostic value of preoperative MRI metrics for diffuse lower-grade glioma molecular subtypes. Am J Neuroradiol 41:815–821. https://doi.org/10.3174/ajnr.A6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gómez Vecchio T, Neimantaite A, Corell A, Bartek J Jr, Jensdottir M, Reinertsen I, Solheim O, Jakola AS (2021) Lower-grade gliomas: an epidemiological voxel-based analysis of location and proximity to eloquent regions. Front Oncol 11:748229. https://doi.org/10.3389/fonc.2021.748229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gousias K, Schramm J, Simon M (2014) Extent of resection and survival in supratentorial infiltrative low-grade gliomas: analysis of and adjustment for treatment bias. Acta Neurochir 156:327–337. https://doi.org/10.1007/s00701-013-1945-0

    Article  PubMed  Google Scholar 

  46. Jensdottir M, Beniaminov S, Jakola AS, Persson O, Norrelgen F, Hylin S, Fletcher-Sandersjöö A, Bartek J Jr (2022) Standardized reporting of adverse events and functional status from the first 5 years of awake surgery for gliomas: a population-based single-institution consecutive series. Acta Neurochir 164:1995–2008. https://doi.org/10.1007/s00701-022-05191-0

    Article  PubMed  Google Scholar 

  47. Kavouridis VK, Boaro A, Dorr J, Cho EY, Iorgulescu JB, Reardon DA, Arnaout O, Smith TR (2019) Contemporary assessment of extent of resection in molecularly defined categories of diffuse low-grade glioma: a volumetric analysis. J Neurosurg 133:1291–1301. https://doi.org/10.3171/2019.6.JNS19972

    Article  Google Scholar 

  48. Coburger J, Onken J, Rueckriegel S et al (2022) Eloquent lower grade gliomas, a highly vulnerable cohort: assessment of patients’ functional outcome after surgery based on the LoG-Glio registry. Front Oncol 12:845992. https://doi.org/10.3389/fonc.2022.845992

    Article  PubMed  PubMed Central  Google Scholar 

  49. Li YC, Chiu HY, Lin YJ, Chen KT, Hsu PW, Huang YC, Chen PY, Wei KC (2021) The merits of awake craniotomy for glioblastoma in the left hemispheric eloquent area: one institution experience. Clin Neurol Neurosurg. https://doi.org/10.1016/j.clineuro.2020.106343

    Article  PubMed  Google Scholar 

  50. Meyer FB, Bates LM, Goerss SJ, Friedman JA, Windschitl WL, Duffy JR, Perkins WJ, O’Neill BP (2001) Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo Clin Proc 76:677–687. https://doi.org/10.4065/76.7.677

    Article  CAS  PubMed  Google Scholar 

  51. Arifin MT, Setiawan FE, Prihastomo KT, Bintoro AC (2020) Awake craniotomy procedure for near eloquent cortical area for brain tumor case series: initial experience and the anesthetic challenges. Bali Med J 9:531–536. https://doi.org/10.15562/bmj.v9i2.1916

    Article  Google Scholar 

  52. Chaichana K, Parker S, Olivi A, Quiñones-Hinojosa A (2010) A proposed classification system that projects outcomes based on preoperative variables for adult patients with glioblastoma multiforme. J Neurosurg 112:997–1004. https://doi.org/10.3171/2009.9.JNS09805

    Article  PubMed  Google Scholar 

  53. Chaichana KL, Garzon-Muvdi T, Parker S, Weingart JD, Olivi A, Bennett R, Brem H, Quiñones-Hinojosa A (2011) Supratentorial glioblastoma multiforme: the role of surgical resection versus biopsy among older patients. Ann Surg Oncol 18:239–245. https://doi.org/10.1245/s10434-010-1242-6

    Article  PubMed  Google Scholar 

  54. Link TW, Woodworth GF, Chaichana KL, Grossman SA, Mayer RS, Brem H, Weingart JD, Quinones-Hinojosa A (2012) Hyperglycemia is independently associated with post-operative function loss in patients with primary eloquent glioblastoma. J Clin Neurosci 19:996–1000. https://doi.org/10.1016/j.jocn.2011.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maldaun MV, Khawja SN, Levine NB, Rao G, Lang FF, Weinberg JS, Tummala S, Cowles CE, Ferson D, Nguyen AT, Sawaya R, Suki D, Prabhu SS (2014) Awake craniotomy for gliomas in a high-field intraoperative magnetic resonance imaging suite: analysis of 42 cases. J Neurosurg 121:810–817. https://doi.org/10.3171/2014.6.JNS132285

    Article  PubMed  Google Scholar 

  56. Moiyadi A, Shetty P (2017) Early experience with combining awake craniotomy and intraoperative navigable ultrasound for resection of eloquent region gliomas. J Neurol Surg Part A 78:105–112. https://doi.org/10.1055/s-0036-1584512

    Article  Google Scholar 

  57. Dea N, Borduas M, Kenny B, Fortin D, Mathieu D (2010) Safety and efficacy of Gamma Knife surgery for brain metastases in eloquent locations. J Neurosurg 113(Suppl):79–83

    Article  PubMed  Google Scholar 

  58. Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, Ferson D, Heimberger AB, DeMonte F, Prabhu SS (2009) Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery 64:836–845. https://doi.org/10.1227/01.NEU.0000342405.80881.81

    Article  PubMed  Google Scholar 

  59. Low D, Ng I, Ng WH (2007) Awake craniotomy under local anaesthesia and monitored conscious sedation for resection of brain tumours in eloquent cortex—outcomes in 20 patients. Ann Acad Med Singap 36:326–331

    Article  PubMed  Google Scholar 

  60. Picart T, Armoiry X, Berthiller J, Dumot C, Pelissou-Guyotat I, Signorelli F, Guyotat J (2017) Is fluorescence-guided surgery with 5-ala in eloquent areas for malignant gliomas a reasonable and useful technique? Neurochirurgie 63:189–196. https://doi.org/10.1016/j.neuchi.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  61. Becker D, Neher P, Jungk C, Jesser J, Pflüger I, Brinster R, Bendszus M, Bruckner T, Maier-Hein K, Scherer M, Unterberg A (2022) Comparison of diffusion signal models for fiber tractography in eloquent glioma surgery—determination of accuracy under awake craniotomy conditions. World Neurosurg 158:e429–e440. https://doi.org/10.1016/j.wneu.2021.11.006

    Article  PubMed  Google Scholar 

  62. Ille S, Schroeder A, Albers L, Kelm A, Droese D, Meyer B, Krieg SM (2021) Non-invasive mapping for effective preoperative guidance to approach highly language-eloquent gliomas—a large scale comparative cohort study using a new classification for language eloquence. Cancers 13:1–14. https://doi.org/10.3390/cancers13020207

    Article  Google Scholar 

  63. Tarapore PE, Findlay AM, Honma SM, Mizuiri D, Houde JF, Berger MS, Nagarajan SS (2013) Language mapping with navigated repetitive TMS: proof of technique and validation. Neuroimage 82:260–272. https://doi.org/10.1016/j.neuroimage.2013.05.018

    Article  PubMed  Google Scholar 

  64. Hendi K, Rahmani M, Larijani A, Ajam Zibadi H, Raminfard S, Shariat Moharari R, Gerganov V, Alimohamadi M (2022) Changes in cognitive functioning after surgical resection of language-related, eloquent-area, high-grade gliomas under awake craniotomy. Cogn Behav Neurol 35:130–139. https://doi.org/10.1097/WNN.0000000000000307

    Article  PubMed  Google Scholar 

  65. Bulubas L, Sollmann N, Tanigawa N, Zimmer C, Meyer B, Krieg SM (2018) Reorganization of motor representations in patients with brain lesions: a navigated transcranial magnetic stimulation study. Brain Topogr 31:288–299. https://doi.org/10.1007/s10548-017-0589-4

    Article  PubMed  Google Scholar 

  66. Fang S, Li Y, Wang Y, Zhang Z, Jiang T (2020) Awake craniotomy for gliomas involving motor-related areas: classification and function recovery. J Neuro-Oncol 148:317–325. https://doi.org/10.1007/s11060-020-03520-w

    Article  Google Scholar 

  67. Obermueller T, Schaeffner M, Gerhardt J, Meyer B, Ringel F, Krieg SM (2014) Risks of postoperative paresis in motor eloquently and non-eloquently located brain metastases. BMC Cancer 14:1–10. https://doi.org/10.1186/1471-2407-14-21

    Article  Google Scholar 

  68. Shiban E, Krieg SM, Obermueller T, Wostrack M, Meyer B, Ringel F (2015) Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg 123:301–306. https://doi.org/10.3171/2014.11.JNS141555

    Article  PubMed  Google Scholar 

  69. Sollmann N, Wildschuetz N, Kelm A, Conway N, Moser T, Bulubas L, Kirschke JS, Meyer B, Krieg SM (2018) Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics inpatients with motor-eloquent brain lesions: a combinednavigated transcranial magnetic stimulation-diffusiontensor imaging fiber tracking approach. J Neurophysiol 128:800–810. https://doi.org/10.3171/2016.11.JNS162322

    Article  Google Scholar 

  70. Frey D, Schilt S, Strack V, Zdunczyk A, Rösler J, Niraula B, Vajkoczy P, Picht T (2014) Navigated transcranial magnetic stimulation improves the treatment outcome in patients with brain tumors in motor eloquent locations. Neuro Oncol 16:1365–1372. https://doi.org/10.1093/neuonc/nou110

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hendrix P, Dzierma Y, Burkhardt BW, Simgen A, Wagenpfeil G, Griessenauer CJ, Senger S, Oertel J (2021) Preoperative navigated transcranial magnetic stimulation improves gross total resection rates in patients with motor-eloquent high-grade gliomas: a matched cohort study. Neurosurgery 88:627–636. https://doi.org/10.1093/neuros/nyaa486

    Article  PubMed  Google Scholar 

  72. Abdullah A, El Shitany H, Abbass W, Safwat A, Elsamman A, El Refaee E (2016) Surgical resection of low-grade gliomas in eloquent areas with the guidance of the preoperative functional magnetic resonance imaging and craniometric points. J Neurosci Rural Pract 7:571–576. https://doi.org/10.4103/0976-3147.188629

    Article  PubMed  PubMed Central  Google Scholar 

  73. Air EL, Leach JL, Warnick RE, McPherson CM (2009) Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: a retrospective review of 284 cases. J Neurosurg 111:820–824. https://doi.org/10.3171/2009.3.JNS081695

    Article  PubMed  Google Scholar 

  74. Danks RA, Aglio LS, Gugino LD, Black PM (2000) Craniotomy under local anesthesia and monitored conscious sedation for the resection of tumors involving eloquent cortex. J Neuro-Oncol 49:131–139. https://doi.org/10.1023/a:1026577518902

    Article  CAS  Google Scholar 

  75. Kral T, Kurthen M, Schramm J, Urbach H, Meyer B (2006) Stimulation mapping via implanted grid electrodes prior to surgery for gliomas in highly eloquent cortex. Neurosurgery 58:36–42. https://doi.org/10.1227/01.neu.0000279225.61128.3e

    Article  Google Scholar 

  76. Martino J, Honma SM, Findlay AM, Guggisberg AG, Owen JP, Kirsch HE, Berger MS, Nagarajan SS (2011) Resting functional connectivity in patients with brain tumors in eloquent areas. Ann Neurol 69:521–352. https://doi.org/10.1002/ana.22167

    Article  PubMed  PubMed Central  Google Scholar 

  77. Trinh VT, Fahim DK, Maldaun MV, Shah K, McCutcheon IE, Rao G, Lang F, Weinberg J, Sawaya R, Suki D, Prabhu SS (2014) Impact of preoperative functional magnetic resonance imaging during awake craniotomy procedures for intraoperative guidance and complication avoidance. Stereotact Funct Neurosurg 92:315–322. https://doi.org/10.1159/000365224

    Article  PubMed  Google Scholar 

  78. Jimenez de la Pena M, Gil Robles S, Recio Rodriguez M, Ruiz Ocana C, Martinez de Vega V (2013) Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas. Radiologia 55:505–513. https://doi.org/10.1016/j.rx.2012.01.004

    Article  CAS  PubMed  Google Scholar 

  79. Latini F, Axelson H, Fahlström M, Jemstedt M, Alberius Munkhammar Å, Zetterling M, Ryttlefors M (2021) Role of preoperative assessment in predicting tumor-induced plasticity in patients with diffuse gliomas. J Clin Med 10:1–10. https://doi.org/10.3390/jcm10051108

    Article  Google Scholar 

  80. Rueckriegel SM, Linsenmann T, Kessler AF, Homola GA, Bartsch AJ, Ernestus RI, Westermaier T, Löhr M (2016) Feasibility of the combined application of navigated probabilistic fiber tracking and navigated ultrasonography in brain tumor surgery. World Neurosurg 90:306–314. https://doi.org/10.1016/j.wneu.2016.02.119

    Article  PubMed  Google Scholar 

  81. Alexopoulos G, Cikla U, El Tecle N, Kulkarni N, Pierson M, Mercier P, Kemp J, Coppens J, Mahmoud S, Sehi M, Bucholz R, Abdulrauf S (2019) The value of white matter tractography by diffusion tensor imaging in altering a neurosurgeon’s operative plan. World Neurosurg 132:e305–e313. https://doi.org/10.1016/j.wneu.2019.08.168

    Article  PubMed  Google Scholar 

  82. Marongiu A, D’Andrea G, Raco A (2017) 1.5-T Field intraoperative magnetic resonance imaging improves extent of resection and survival in glioblastoma removal. World Neurosurg 98:578–586. https://doi.org/10.1016/j.wneu.2016.11.013

    Article  PubMed  Google Scholar 

  83. Park CJ, Han K, Shin H, Ahn SS, Choi YS, Park YW, Chang JH, Kim SH, Jain R, Lee SK (2020) MR image phenotypes may add prognostic value to clinical features in IDH wild-type lower-grade gliomas. Eur Radiol 30:3035–3045. https://doi.org/10.1007/s00330-020-06683-2

    Article  PubMed  Google Scholar 

  84. Šteňo A, Hollý V, Mendel P, Šteňová V, Petričková Ľ, Timárová G, Jezberová M, Belan V, Rychlý B, Šurkala J, Šteňo J (2018) Navigated 3D–ultrasound versus conventional neuronavigation during awake resections of eloquent low-grade gliomas: a comparative study at a single institution. Acta Neurochir 160:331–342. https://doi.org/10.1007/s00701-017-3377-8

    Article  PubMed  Google Scholar 

  85. Tobler WD, Stanley M (1994) Stereotactic resection of brain metastases in eloquent brain. Stereotactic Funct Neurosurg 63:38–44. https://doi.org/10.1159/000100289

    Article  CAS  Google Scholar 

  86. Mamani R, Jacobo JA, Mejia S, Nuñez-Velasco S, Aragon-Arreola J, Moreno S (2020) Analysis of intraoperative seizures during bipolar brain mapping in eloquent areas: intraoperative seizures in brain mapping. Clin Neurol Neurosurg 199:106304. https://doi.org/10.1016/j.clineuro.2020.106304

    Article  PubMed  Google Scholar 

  87. Bianco Ade M, Miura FK, Clara C, Almeida JR, Silva CC, Teixeira MJ, Marie SK (2013) Low-grade astrocytoma—surgical outcomes in eloquent versus non-eloquent brain areas. Arq Neuro-Psiquiatr 71:31–34. https://doi.org/10.1590/s0004-282x2012005000017

    Article  Google Scholar 

  88. Capellades J, Puig J, Domenech S, Pujol T, Oleaga L, Camins A, Majós C, Diaz R, de Quintana C, Teixidor P, Conesa G, Plans G, Gonzalez J, García-Balañà N, Velarde JM, Balaña C (2018) Is a pretreatment radiological staging system feasible for suggesting the optimal extent of resection and predicting prognosis in glioblastoma? An observational study. J Neuro-Oncol 137:367–377. https://doi.org/10.1007/s11060-017-2726-z

    Article  Google Scholar 

  89. Coburger J, Merkel A, Scherer M et al (2016) Low-grade glioma surgery in intraoperative magnetic resonance imaging: results of a multicenter retrospective assessment of the german study group for intraoperative magnetic resonance imaging. Neurosurgery 78:775–785. https://doi.org/10.1227/NEU.0000000000001081

    Article  PubMed  Google Scholar 

  90. Duffau H, Capelle L (2004) Preferential brain locations of low-grade gliomas: comparison with glioblastomas and review of hypothesis. Cancer 100:2622–2626. https://doi.org/10.1002/cncr.20297

    Article  PubMed  Google Scholar 

  91. Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, Van Effenterre R, Capelle L (2005) Contribution of intraoperative electrical stimulations in surgery of low grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76:845–851. https://doi.org/10.1136/jnnp.2004.048520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hrabalek L, Kalita O, Vaverka M, Zlevorova M, Ehrmann J Jr, Cechakova E, Adamus M, Novak V, Langova K (2015) Resection versus biopsy of glioblastomas in eloquent brain areas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 159:150–155. https://doi.org/10.5507/bp.2013.052

    Article  PubMed  Google Scholar 

  93. Leroy HA, Delmaire C, Le Rhun E, Drumez E, Lejeune JP, Reyns N (2019) High-field intraoperative MRI and glioma surgery: results after the first 100 consecutive patients. Acta Neurochir 161:1467–1474. https://doi.org/10.1007/s00701-019-03920-6

    Article  PubMed  Google Scholar 

  94. Martino J, Gomez E, Bilbao JL, Dueñas JC, Vázquez-Barquero A (2013) Cost-utility of maximal safe resection of WHO grade II gliomas within eloquent areas. Acta Neurochir 155:41–50. https://doi.org/10.1007/s00701-012-1541-8

    Article  PubMed  Google Scholar 

  95. Martino J, Taillandier L, Moritz-Gasser S, Gatignol P, Duffau H (2009) Re-operation is a safe and effective therapeutic strategy in recurrent WHO grade II gliomas within eloquent areas. Acta Neurochir 151:427–436. https://doi.org/10.1007/s00701-009-0232-6

    Article  PubMed  Google Scholar 

  96. Reyns N, Leroy HA, Delmaire C, Derre B, Le-Rhun E, Lejeune JP (2017) Intraoperative MRI for the management of brain lesions adjacent to eloquent areas. Neurochirurgie 63:181–188. https://doi.org/10.1016/j.neuchi.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  97. Sacko O, Lauwers-Cances V, Brauge D, Sesay M, Brenner A, Roux FE (2011) Awake craniotomy vs surgery under general anesthesia for resection of supratentorial lesions. Neurosurgery 68:1192–1198. https://doi.org/10.1227/NEU.0b013e31820c02a3

    Article  PubMed  Google Scholar 

  98. Shinoda J, Sakai N, Murase S, Yano H, Matsuhisa T, Funakoshi T (2001) Selection of eligible patients with supratentorial glioblastoma multiforme for gross total resection. J Neuro-Oncol 52:161–171. https://doi.org/10.1023/a:1010624504311

    Article  CAS  Google Scholar 

  99. Spena G, D’Agata F, Panciani PP, Di Monale MB, Fontanella MM (2013) Supratentorial gliomas in eloquent areas: which parameters can predict functional outcome and extent of resection? PLoS ONE 8(12):e0080916. https://doi.org/10.1371/journal.pone.0080916

    Article  CAS  Google Scholar 

  100. Zhang JS, Qu L, Wang Q, Jin W, Hou YZ, Sun GC, Li FY, Yu XG, Xu BN, Chen XL (2018) Intraoperative visualisation of functional structures facilitates safe frameless stereotactic biopsy in the motor eloquent regions of the brain. Br J Neurosurg 32:372–380. https://doi.org/10.1080/02688697.2017.1416059

    Article  PubMed  Google Scholar 

  101. Bunyaratavej K, Wangsawatwong P (2019) Catheter guided cerebral glioma resection combined with awake craniotomy: its usefulness and surgical outcome. Br J Neurosurg 33:528–535. https://doi.org/10.1080/02688697.2019.1587380

    Article  PubMed  Google Scholar 

  102. Ferroli P, Broggi M, Schiavolin S et al (2015) Predicting functional impairment in brain tumor surgery: the Big Five and the Milan Complexity Scale. Neurosurg Focus 39:E14. https://doi.org/10.3171/2015.9.FOCUS15339

    Article  PubMed  Google Scholar 

  103. Nandakumar N, Manzoor K, Agarwal S, Pillai JJ, Gujar SK, Sair HI, Venkataraman A (2021) Automated eloquent cortex localization in brain tumor patients using multi-task graph neural networks. Med Image Anal 74:102203. https://doi.org/10.1016/j.media.2021.102203

    Article  PubMed  PubMed Central  Google Scholar 

  104. De Witt Hamer PC, Hendriks EJ, Mandonnet E, Barkhof F, Zwinderman AH, Duffau H (2013) Resection probability maps for quality assessment of glioma surgery without brain location bias. PLoS ONE 8:e73353. https://doi.org/10.1371/journal.pone.0073353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pallud J, Roux A, Trancart B, Peeters S, Moiraghi A, Edjlali M, Oppenheim C, Varlet P, Chrétien F, Dhermain F, Zanello M, Dezamis E (2021) Surgery of insular diffuse gliomas—Part 2: probabilistic cortico-subcortical atlas of critical eloquent brain structures and probabilistic resection map during transcortical awake resection. Neurosurgery 89:579–590. https://doi.org/10.1093/neuros/nyab255

    Article  PubMed  Google Scholar 

  106. Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duffau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237. https://doi.org/10.1016/j.neuroimage.2019.116237

    Article  PubMed  Google Scholar 

  107. Tate MC, Herbet G, Moritz-Gasser S, Tate JE, Duffau H (2014) Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 137:2773–2782. https://doi.org/10.1093/brain/awu168

    Article  PubMed  Google Scholar 

  108. Chang EF, Clark A, Smith JS, Polley MY, Chang SM, Barbaro NM, Parsa AT, McDermott MW, Berger MS (2011) Functional mapping-guided resection of low-grade gliomas in eloquent areas of the brain: improvement of long-term survival—clinical article. J Neurosurg 114:566–573. https://doi.org/10.3171/2010.6.JNS091246

    Article  PubMed  Google Scholar 

  109. Chang EF, Clark A, Jensen RL, Bernstein M, Guha A, Carrabba G, Mukhopadhyay D, Kim W, Liau LM, Chang SM, Smith JS, Berger MS, McDermott MW (2009) Multiinstitutional validation of the University of California at San Francisco Low-Grade Glioma Prognostic Scoring System: clinical article. J Neurosurg 111:203–210. https://doi.org/10.3171/2009.2.JNS081101

    Article  PubMed  Google Scholar 

  110. Capellades J, Teixidor P, Villalba G, Hostalot C, Plans G, Armengol R, Medrano S, Estival A, Luque R, Gonzalez S, Gil-Gil M, Villa S, Sepulveda J, García-Mosquera JJ, Balana C (2017) Results of a multicenter survey showing interindividual variability among neurosurgeons when deciding on the radicality of surgical resection in glioblastoma highlight the need for more objective guidelines. Clin Transl Oncol 19:727–734. https://doi.org/10.1007/s12094-016-1598-6

    Article  CAS  PubMed  Google Scholar 

  111. Bagadia A, Purandare H, Misra BK, Gupta S (2011) Application of magnetic resonance tractography in the perioperative planning of patients with eloquent region intra-axial brain lesions. J Clin Neurosci 18:633–639. https://doi.org/10.1016/j.jocn.2010.08.026

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Bramer, biomedical information specialist at the Erasmus MC Library, for his assistance in the computer-aided systematic search.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

JKWG, AJPEV, MSB, ER, KK: Study concept and design. ER, KK: Acquisition, analysis, or interpretation of data. ER, JKWG: Drafting of manuscript. JWS, EMB, MSB, BVN, AJPEV, JKWG: Critical revision of the manuscript for important intellectual content. Bramer: Administrative, technical, or material support. JKWG, AJPEV, MSB: Study supervision.

Corresponding author

Correspondence to Emma Rammeloo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rammeloo, E., Schouten, J.W., Krikour, K. et al. Preoperative assessment of eloquence in neurosurgery: a systematic review. J Neurooncol 165, 413–430 (2023). https://doi.org/10.1007/s11060-023-04509-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04509-x

Keywords

Navigation