Skip to main content

Advertisement

Log in

Integrated clinical genomic analysis reveals xenobiotic metabolic genes are downregulated in meningiomas of current smokers

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Meningiomas are the most common primary intracranial tumor. Recently, various genetic classification systems for meningioma have been described. We sought to identify clinical drivers of different molecular changes in meningioma. As such, clinical and genomic consequences of smoking in patients with meningiomas remain unexplored.

Methods

88 tumor samples were analyzed in this study. Whole exome sequencing (WES) was used to assess somatic mutation burden. RNA sequencing data was used to identify differentially expressed genes (DEG) and genes sets (GSEA).

Results

Fifty-seven patients had no history of smoking, twenty-two were past smokers, and nine were current smokers. The clinical data showed no major differences in natural history across smoking status. WES revealed absence of AKT1 mutation rate in current or past smokers compared to non-smokers (p = 0.046). Current smokers had increased mutation rate in NOTCH2 compared to past and never smokers (p < 0.05). Mutational signature from current and past smokers showed disrupted DNA mismatch repair (cosine-similarity = 0.759 and 0.783). DEG analysis revealed the xenobiotic metabolic genes UGT2A1 and UGT2A2 were both significantly downregulated in current smokers compared to past (Log2FC = − 3.97, padj = 0.0347 and Log2FC = − 4.18, padj = 0.0304) and never smokers (Log2FC = − 3.86, padj = 0.0235 and Log2FC = − 4.20, padj = 0.0149). GSEA analysis of current smokers showed downregulation of xenobiotic metabolism and enrichment for G2M checkpoint, E2F targets, and mitotic spindle compared to past and never smokers (FDR < 25% each).

Conclusion

In this study, we conducted a comparative analysis of meningioma patients based on their smoking history, examining both their clinical trajectories and molecular changes. Meningiomas from current smokers were more likely to harbor NOTCH2 mutations, and AKT1 mutations were absent in current or past smokers. Moreover, both current and past smokers exhibited a mutational signature associated with DNA mismatch repair. Meningiomas from current smokers demonstrate downregulation of xenobiotic metabolic enzymes UGT2A1 and UGT2A2, which are downregulated in other smoking related cancers. Furthermore, current smokers exhibited downregulation xenobiotic metabolic gene sets, as well as enrichment in gene sets related to mitotic spindle, E2F targets, and G2M checkpoint, which are hallmark pathways involved in cell division and DNA replication control. In aggregate, our results demonstrate novel alterations in meningioma molecular biology in response to systemic carcinogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data is publicly available in the Gene Expression Omnibus (GEO) database (accession no. GSE136661).

References

  1. Wiemels J, Wrensch M, Claus EB (2010) Epidemiology and etiology of meningioma. J Neurooncol 99(3):307–314

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jääskeläinen J (1986) Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis Surg Neurol 26(5):461–469

    PubMed  Google Scholar 

  3. Bayley, J.C.t., et al., Multiple approaches converge on three biological subtypes of meningioma and extract new insights from published studies. Sci Adv, 2022. 8(5): p. eabm6247.

  4. Patel AJ et al (2019) Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors. Proc Natl Acad Sci U S A 116(43):21715–21726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Choudhury A et al (2022) Meningioma DNA methylation groups identify biological drivers and therapeutic vulnerabilities. Nat Genet 54(5):649–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nassiri F et al (2021) A clinically applicable integrative molecular classification of meningiomas. Nature 597(7874):119–125

    Article  CAS  PubMed  Google Scholar 

  7. Louis DN et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 23(8):1231–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee YS, Lee YS (2020) Molecular characteristics of meningiomas. J Pathol Transl Med 54(1):45–63

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lee S et al (2019) The role of Merlin/NF2 loss in meningioma biology. Cancers (Basel) 11(11):1633

    Article  CAS  PubMed  Google Scholar 

  10. Khan AB et al (2023) Even heterozygous loss of CDKN2A/B greatly accelerates recurrence in aggressive meningioma. Acta Neuropathol 145(4):501–503

    Article  CAS  PubMed  Google Scholar 

  11. Jansen M et al (2012) Gain of chromosome arm 1q in atypical meningioma correlates with shorter progression-free survival. Neuropathol Appl Neurobiol 38(2):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Agnihotri S et al (2017) Therapeutic radiation for childhood cancer drives structural aberrations of NF2 in meningiomas. Nat Commun 8(1):186

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khan AB et al (2020) Identification of novel fusion transcripts in meningioma. J Neurooncol 149(2):219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang ZF et al (2000) Environmental tobacco smoking, mutagen sensitivity, and head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 9(10):1043–1049

    CAS  PubMed  Google Scholar 

  15. Hussain A et al (2019) Neoplastic pathogenesis associated with cigarette carcinogens. Cureus 11(1):e3955

    PubMed  PubMed Central  Google Scholar 

  16. Ma Y, Li MD (2017) Establishment of a strong link between smoking and cancer pathogenesis through DNA methylation analysis. Sci Rep 7(1):1811

    Article  PubMed  PubMed Central  Google Scholar 

  17. Phillips LE et al (2005) Active and passive cigarette smoking and risk of intracranial meningioma. Neuroepidemiology 24(3):117–122

    Article  PubMed  Google Scholar 

  18. Claus EB et al (2012) Cigarette smoking and risk of meningioma: the effect of gender. Cancer Epidemiol Biomarkers Prev 21(6):943–950

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fan Z et al (2013) Smoking and risk of meningioma: a meta-analysis. Cancer Epidemiol 37(1):39–45

    Article  PubMed  Google Scholar 

  20. Vida S et al (2014) Brain tumours and cigarette smoking: analysis of the INTERPHONE Canada case-control study. Environ Health 13:55

    Article  PubMed  PubMed Central  Google Scholar 

  21. Omiecinski CJ et al (2011) Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci 120:S49-75

    Article  CAS  PubMed  Google Scholar 

  22. Banerjee J et al (2009) Radiation-induced meningiomas: a shadow in the success story of childhood leukemia. Neuro Oncol 11(5):543–549

    Article  PubMed  PubMed Central  Google Scholar 

  23. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang L et al (2015) Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet 47(12):1426–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayakonda A et al (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28(11):1747–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mootha VK et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    Article  CAS  PubMed  Google Scholar 

  28. Li L, Feng Q, Wang X (2020) PreMSIm: An R package for predicting microsatellite instability from the expression profiling of a gene panel in cancer. Comput Struct Biotechnol J 18:668–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Alexandrov LB et al (2013) Signatures of mutational processes in human cancer. Nature 500(7463):415–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. The 2004 United States Surgeon General's Report: The Health Consequences of Smoking. N S W Public Health Bull, 2004. 15(5–6): p. 107.

  31. Hiscock R et al (2012) Socioeconomic status and smoking: a review. Ann N Y Acad Sci 1248:107–123

    Article  PubMed  Google Scholar 

  32. Jackson HN et al (2022) Racial and socioeconomic disparities in patients with meningioma: a retrospective cohort study. Neurosurgery 90(1):114–123

    Article  PubMed  Google Scholar 

  33. Clark VE et al (2013) Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339(6123):1077–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Christiaans I et al (2011) Germline SMARCB1 mutation and somatic NF2 mutations in familial multiple meningiomas. J Med Genet 48(2):93–97

    Article  CAS  PubMed  Google Scholar 

  35. Michelsen B et al (1990) HLA heterozygosity in insulin-dependent diabetes is most frequent at the DQ locus. Scand J Immunol 31(4):405–413

    Article  CAS  PubMed  Google Scholar 

  36. Weller M et al (2017) Durable control of metastatic AKT1-Mutant WHO grade 1 meningothelial meningioma by the AKT inhibitor, AZD5363. J Natl Cancer Inst 109(3):1–4

    Article  PubMed  Google Scholar 

  37. Li W et al (2017) Cigarette smoke enhances initiation and progression of lung cancer by mutating Notch1/2 and dysregulating downstream signaling molecules. Oncotarget 8(70):115128–115139

    Article  PubMed  PubMed Central  Google Scholar 

  38. Baia GS et al (2008) Notch activation is associated with tetraploidy and enhanced chromosomal instability in meningiomas. Neoplasia 10(6):604–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang P et al (2000) Higher risk of mismatch repair-deficient colorectal cancer in alpha(1)-antitrypsin deficiency carriers and cigarette smokers. Mol Genet Metab 71(4):639–645

    Article  CAS  PubMed  Google Scholar 

  40. Slattery ML et al (2000) Associations between cigarette smoking, lifestyle factors, and microsatellite instability in colon tumors. J Natl Cancer Inst 92(22):1831–1836

    Article  CAS  PubMed  Google Scholar 

  41. Nandi S et al (2006) Expression of DNA mismatch repair proteins in transformed non-Hodgkin’s lymphoma: relationship to smoking. Leuk Lymphoma 47(9):1806–1812

    Article  CAS  PubMed  Google Scholar 

  42. Mukherjee B et al (2014) Reduction of DNA mismatch repair protein expression in airway epithelial cells of premenopausal women chronically exposed to biomass smoke. Environ Sci Pollut Res Int 21(4):2826–2836

    Article  CAS  PubMed  Google Scholar 

  43. Doukas SG et al (2022) The effect of tobacco smoke N-Nitrosamines, NNK and NDEA, and nicotine, on DNA mismatch repair mechanism and miRNA markers, in hypopharyngeal squamous cell carcinoma: an in vivo model and clinical evidence. Curr Oncol 29(8):5531–5549

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harth V et al (2008) Head and neck squamous-cell cancer and its association with polymorphic enzymes of xenobiotic metabolism and repair. J Toxicol Environ Health A 71(13–14):887–897

    Article  CAS  PubMed  Google Scholar 

  45. Rouissi K et al (2011) Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia. Pathol Oncol Res 17(4):879–886

    Article  CAS  PubMed  Google Scholar 

  46. Pande M et al (2010) Interactions between cigarette smoking and selected polymorphisms in xenobiotic metabolizing enzymes in risk for colorectal cancer: A case-only analysis. Mol Carcinog 49(11):974–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Berrandou T et al (2019) Association of breast cancer risk with polymorphisms in genes involved in the metabolism of xenobiotics and interaction with tobacco smoking: A gene-set analysis. Int J Cancer 144(8):1896–1908

    Article  CAS  PubMed  Google Scholar 

  48. Bushey RT, Lazarus P (2012) Identification and functional characterization of a novel UDP-glucuronosyltransferase 2A1 splice variant: potential importance in tobacco-related cancer susceptibility. J Pharmacol Exp Ther 343(3):712–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bushey RT, Dluzen DF, Lazarus P (2013) Importance of UDP-glucuronosyltransferases 2A2 and 2A3 in tobacco carcinogen metabolism. Drug Metab Dispos 41(1):170–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bushey RT et al (2011) Characterization of UDP-glucuronosyltransferase 2A1 (UGT2A1) variants and their potential role in tobacco carcinogenesis. Pharmacogenet Genomics 21(2):55–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thum T et al (2006) Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers. Environ Health Perspect 114(11):1655–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu DG et al (2021) The expression profiles and deregulation of UDP-Glycosyltransferase (UGT) genes in human cancers and their association with clinical outcomes. Cancers (Basel) 13(17):4491

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Parts of this study were funded by the Roderick D. Mac- Donald Fund, the Jan and Dan Duncan Neurologic Research Institute at Texas Children’s Hospital, and the Hamill Foundation. A.J.P. is supported by a K08 award by the National Institute of Neurological Disorders and Stroke (K08NS102474).

Author information

Authors and Affiliations

Authors

Contributions

ABK, RP, MFM, AOH, ASH, TJK, and AJP designed the research. ABK, RP, MFM, RG, EG, AS, CE, SHN, TJK, and AJP performed the research. ABK, RP, MFM, ASH, AOH, TJK, and AJP analyzed the data. ABK, RJ, MFM, RG, and AJP wrote the manuscript.

Corresponding author

Correspondence to Akash J. Patel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Informed consent

All patients provided written informed consent, and tumor tissues were collected under an IRB approved protocol at BCM.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 595 KB)

Fig. S1 Classification of mutation type in each sample. (a) Mutational summary of meningioma of current, past, and never smokers. (b) Transition and transversion analysis of meningioma of current, past, and never smokers. (c) Most frequently mutated genes in of meningioma of current, past, and never smokers.

Supplementary file2 (PDF 647 KB)

Fig. S2 (a) Heatmap of the 1000 most expressed genes with samples organized by unsupervised clustering. (b) PCA plot coded by MenG Group and smoking history.

Supplementary file3 (PDF 1291 KB)

Fig. S3 Within MenG Group GSEA analysis on the basis of smoking status.

Supplementary file4 (DOCX 18 KB)

Supplementary file5 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.B., Patel, R., McDonald, M.F. et al. Integrated clinical genomic analysis reveals xenobiotic metabolic genes are downregulated in meningiomas of current smokers. J Neurooncol 163, 397–405 (2023). https://doi.org/10.1007/s11060-023-04359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04359-7

Keywords

Navigation