Skip to main content

Advertisement

Log in

Smoking and Polymorphisms in Xenobiotic Metabolism and DNA Repair Genes are Additive Risk Factors Affecting Bladder Cancer in Northern Tunisia

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking and genetic polymorphisms on the occurrence of bladder cancer. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes, such as the super-families of N-acetyltransferases (NAT) and glutathione S-transferases (GST). DNA repair is essential to an individual’s ability to respond to damage caused by tobacco carcinogens. Alterations in DNA repair genes may affect cancer risk by influencing individual susceptibility to this environmental exposure. Polymorphisms in NAT2, GST and DNA repair genes alter the ability of these enzymes to metabolize carcinogens or to repair alterations caused by this process. We have conducted a case-control study to assess the role of smoking, slow NAT2 variants, GSTM1 and GSTT1 null, and XPC, XPD, XPG nucleotide excision-repair (NER) genotypes in bladder cancer development in North Tunisia. Taken alone, each gene unless NAT2 did not appear to be a factor affecting bladder cancer susceptibility. For the NAT2 slow acetylator genotypes, the NAT2*5/*7 diplotype was found to have a 7-fold increased risk to develop bladder cancer (OR = 7.14; 95% CI: 1.30–51.41). However, in tobacco consumers, we have shown that Null GSTM1, Wild GSTT1, Slow NAT2, XPC (CC) and XPG (CC) are genetic risk factors for the disease. When combined together in susceptible individuals compared to protected individuals these risk factors give an elevated OR (OR = 61). So, we have shown a strong cumulative effect of tobacco and different combinations of studied genetic risk factors which lead to a great susceptibility to bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen SM, Johansson SL (1992) Epidemiology and etiology of bladder cancer. Urol Clin North Am 19:421–428

    PubMed  CAS  Google Scholar 

  2. Raunio H, Husgafvel-Pursiainen K, Anttila S et al (1995) Diagnosis of polymorphisms in carcinogen-activating and inactivating enzymes and cancer susceptibility: a review. Gene 159:113–121

    Article  PubMed  CAS  Google Scholar 

  3. Kaprio J (2000) Science, medicine, and the future. Genetic epidemiology. B Med J 320:1257–1259

    Article  CAS  Google Scholar 

  4. Ford JG, Li Y, O’Sullivan MM et al (2000) Glutathione S-transferase M1 polymorphism and lung cancer risk in African-Americans. Carcinogenesis 21:1971–1975

    Article  PubMed  CAS  Google Scholar 

  5. Karagas MR, Park S, Warren A et al (2005) Gender, smoking, glutathione- S-transferase variants and bladder cancer incidence: a population-based study. Cancer Lett 219:63–69

    Article  PubMed  CAS  Google Scholar 

  6. Abdel-Rahman SZ, Anwar WA, Abdel-Ala WE et al (1998) GSTM1 and GSTT1 genes are potential risk modifiers for bladder cancer. Cancer Detect Prev 22:129–138

    Article  PubMed  CAS  Google Scholar 

  7. Salagovic J, Kalina I, Stubna J et al (1998) Genetic polymorphism of glutathione S-transferase M1 and T1 as a risk factor in lung and bladder cancers. Neoplasma 45:312–317

    PubMed  CAS  Google Scholar 

  8. Hengstler JG, Kett A, Arand M et al (1998) Glutathione S-transferase T1 and M1 gene defects in ovarian carcinoma. Cancer Lett 130:43–48

    Article  PubMed  CAS  Google Scholar 

  9. Katoh T, Inatomi H, Kim H et al (1998) Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett 132:147–152

    Article  PubMed  CAS  Google Scholar 

  10. Badawi AF, Hirvonen A, Bell DA et al (1995) Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen-DNA adducts formation in human urinary bladder. Cancer Res 55:5230–5237

    PubMed  CAS  Google Scholar 

  11. Kloth MT, Gee RL, Messing EM et al (1994) Expression of N acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis 15:2781–2787

    Article  PubMed  CAS  Google Scholar 

  12. Blum M, Grant DM, McBride W et al (1990) Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 9:193–203

    Article  PubMed  CAS  Google Scholar 

  13. Brockmoller J, Cascorbi I, Kerb R et al (1996) Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 56:3915–3925

    PubMed  CAS  Google Scholar 

  14. Risch A, Wallace DMA, Bathers S et al (1995) Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer. Hum Mol Genet 4:231–236

    Article  PubMed  CAS  Google Scholar 

  15. Probst-Hensch NM, Bell DA, Watson MA et al (2000) N-acetyltransferase 2 phenotype but not NAT1*10 genotype affects aminobiphenylhemoglobin adduct levels. Cancer Epidemiol Biomarkers Prev 9:619–623

    PubMed  CAS  Google Scholar 

  16. Yu MC, Skipper PL, Taghizadeh K et al (1994) Acetylator phenotype, aminobiphenylhemoglobin adduct levels, and bladder cancer risk in white, black, and Asian men in Los Angeles, California. J Nat Cancer Inst 86:712–716

    Article  PubMed  CAS  Google Scholar 

  17. Airoldi L, Orsi F, Magagnotti C et al (2002) Determinants of 4-aminobiphenyl-DNA adducts in bladder cancer biopsies. Carcinogenesis 23:861–866

    Article  PubMed  CAS  Google Scholar 

  18. Hao GY, Zhang WD, Chen YH et al (2004) Relationship between genetic polymorphism of NAT2 and susceptibility to urinary bladder cancer. Zhonghua Zhong Liu Za Zhi 26:283–286

    PubMed  CAS  Google Scholar 

  19. Wu XF, Dzenis YA (2006) Guided self-assembly diblock copolymer thin films on chemically patterned substrartes. J Chem Phys 125:174–1777

    Google Scholar 

  20. Chen CH, Shun CT, Huang KH et al (2007) Stopping smoking might reduce tumour recurrence in non-muscle invasive bladder cancer. BJU Int 100:281–286

    Article  PubMed  Google Scholar 

  21. Garcıa-Closas M, Malats N, Real FX et al (2006) Genetic variation in the nucleotide-excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15:536–542

    Article  PubMed  Google Scholar 

  22. Sanyal S, De Verdier PJ, Steineck G et al (2007) Polymorphisms in XPD, XPC and the risk of death in patients with urinary bladder neoplasms. Acta Oncol 46:31–41

    Article  PubMed  CAS  Google Scholar 

  23. Zhu Y, Yang H, Chen Q et al (2008) Modulation of DNA damage/DNA repair capacity by XPC polymorphisms. DNA Repair 7:141–148

    Article  PubMed  CAS  Google Scholar 

  24. Dworaczek H, Xiao W (2007) Xeroderma pigmentosum: a glimpse into nucleotide-excision repair, genetic instability, and cancer. Crit Rev Oncog 13:159–177

    PubMed  Google Scholar 

  25. Shen M, Hung RJ, Brennan P et al (2003) Polymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy. Cancer Epidemiol Biomarkers Prev 12:1234–1240

    PubMed  CAS  Google Scholar 

  26. Sellami A, Jlidi R, Hsaıri M et al (2000) Registre du cancer du Sud Tunisie 1997. Hôpital Habib Bourguiba 2:32–35

    Google Scholar 

  27. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  28. Arand M, Muhlbaur R, Hengstler J et al (1996) A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S transferase GSTM1 and GSTT1 polymorphisms. Annal Biochem 236:384–386

    Article  Google Scholar 

  29. Hsieh FI, Pu YS, Chern HD et al (1999) Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer. Br J Cancer 81:537–541

    Article  PubMed  CAS  Google Scholar 

  30. Fukino K, Sasaki Y, Hirai S et al (2008) Effect of N-acetyltransferase 2(NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum Concentrations of isoniazid and metabolites in tuberculosis patients. J Toxicol Sci 33:187–195

    Article  PubMed  CAS  Google Scholar 

  31. Vastis KP, Weber WW, Bell DA et al (1995) Nomenclature for N-acetyltransferases. Pharmacogenetics 5:1–17

    Article  Google Scholar 

  32. Sanyal S, Festa F, Sakano S et al (2004) Polymorphisms in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25:729–734

    Article  PubMed  CAS  Google Scholar 

  33. De Ruyck K, Szaumkessel M, De Rudder I et al (2007) Polymorphisms in base-excision repair and nucleotide-excision repair genes in relation to lung cancer risk. Mutat Res 631:101–110

    PubMed  Google Scholar 

  34. O’Gorman TW, Woolson RF (1993) The effect of category choice on the odds ratio and several measures of association in case-control studies. Commun Stat 22:1157–1171

    Article  Google Scholar 

  35. Ouerhani S, Tebourski F, Slama MR et al (2006) The role of glutathione transferases M1 and T1 in individual susceptibility to bladder cancer in a Tunisian population. Ann Hum Biol 33:529–535

    Article  PubMed  Google Scholar 

  36. Garte S, Gaspari L, Alexandrie AK et al (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248

    PubMed  CAS  Google Scholar 

  37. Kempkes M, Golka K, Reich S et al (1996) Glutathione transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol 71:123–126

    Article  PubMed  CAS  Google Scholar 

  38. Lee SJ, Cho SH, Park SK et al (2002) Combined effect of glutathione S-transferase M1 and T1 genotypes on bladder cancer risk. Cancer Lett 77:173–179

    Article  Google Scholar 

  39. Kim WJ, Kim H, Kim CH et al (2002) GSTT1-null genotype is a protective factor against bladder cancer. Urology 60:913–918

    Article  PubMed  Google Scholar 

  40. Hein DW (2006) N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25:1649–1658

    Article  PubMed  CAS  Google Scholar 

  41. Khedhaier A, Hassen E, Bouaouina N et al (2008) Implication of xenobiotic metabolizing enzyme gene (CYP2E1, CYP2C19, CYP2D6, mEH and NAT2) polymorphisms in breast carcinoma. BMC Cancer 28:109–121

    Article  Google Scholar 

  42. Bell DA, Taylor JA, Butler MA et al (1993) Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 14:1689–1692

    Article  PubMed  CAS  Google Scholar 

  43. El Desoky ES, Abdel Salam YM, Salama RH et al (2005) NAT2*5/*5 genotype (341T>C) is a potential risk factor for schistosomiasis- associated bladder cancer in Egyptians. Ther Drug Monit 27:297–304

    Article  PubMed  CAS  Google Scholar 

  44. Fretland AJ, Doll MA, Leff MA et al (2001) Functional characterization of nucleotide polymorphisms in the coding region of N-acetyltransferase 1. Pharmacogenetics 11:511–520

    Article  PubMed  CAS  Google Scholar 

  45. Zang Y, Zhao S, Doll MA et al (2004) The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 14:717–723

    Article  PubMed  CAS  Google Scholar 

  46. Garcia-Closas M, Malats N, Silverman D et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366:649–659

    Article  PubMed  CAS  Google Scholar 

  47. Lin J, Swan GE, Shields PG et al (2007) Mutagen sensitivity and genetic variants in nucleotide-excision repair pathway: genotype-phenotype correlation. Cancer Epidemiol Biomarkers Prev 16:2065–2071

    Article  PubMed  CAS  Google Scholar 

  48. Fontana L, Bosviel R, Delort L (2008) DNA repair gene ERCC2, XPC, XRCC1, XRCC3 polymorphisms and associations with bladder cancer risk in a French cohort. Anticancer Res 28:1853–1856

    PubMed  CAS  Google Scholar 

  49. Rouissi K, Ouerhani S, Oliveira E et al (2009) Polymorphisms in one-carbon metabolism pathway genes and risk for bladder cancer in a Tunisian population. Cancer Genet Cytogenet 195:43–53

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamel Rouissi.

Additional information

Kamel Rouissi and Slah Querhani contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouissi, K., Ouerhani, S., Hamrita, B. et al. Smoking and Polymorphisms in Xenobiotic Metabolism and DNA Repair Genes are Additive Risk Factors Affecting Bladder Cancer in Northern Tunisia. Pathol. Oncol. Res. 17, 879–886 (2011). https://doi.org/10.1007/s12253-011-9398-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-011-9398-3

Keywords

Navigation