Skip to main content
Log in

A novel CDK4/6 inhibitor combined with irradiation demonstrates potent anti-tumor efficacy in diffuse midline glioma

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Objective

Diffuse midline glioma, H3 K27-altered (DMG) is a lethal pediatric brainstem tumor. Despite numerous efforts to improve survival benefits, its prognosis remains poor. This study aimed to design and synthesize a novel CDK4/6 inhibitor YF-PRJ8-1011, which exhibited more potent antitumor activity against a panel of patient-derived DMG tumor cells in vitro and in vivo compared with palbociclib.

Methods

Patient-derived DMG cells were used to assess the antitumor efficacy of YF-PRJ8-1011 in vitro. The liquid chromatography tandem-mass spectrometry method was used to measure the activity of YF-PRJ8-1011 passing through the blood–brain barrier. DMG patient-derived xenograft models were established to detect the antitumor efficacy of YF-PRJ8-1011.

Results

The results showed that YF-PRJ8-1011 could inhibit the growth of DMG cells both in vitro and in vivo. YF-PRJ8-1011 could well penetrate the blood–brain barrier. It also significantly inhibited the growth of DMG tumors and prolonged the overall survival of mice compared with vehicle or palbociclib. Most notably, it exerted potent antitumor efficacy in DMG in vitro and in vivo compared with palbociclib. In addition, we also found that YF-PRJ8-1011 combined with radiotherapy also showed more significant inhibition of DMG xenograft tumor growth than radiotherapy alone.

Conclusion

Collectively, YF-PRJ8-1011 is a novel, safe, and selective CDK4/6 inhibitor for DMG treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Vanan MI, Eisenstat DD (2015) DIPG in children—what can we learn from the past? Front Oncol 5:237. https://doi.org/10.3389/fonc.2015.00237

    Article  PubMed  PubMed Central  Google Scholar 

  2. Meel MH, Kaspers GJL, Hulleman E (2019) Preclinical therapeutic targets in diffuse midline glioma. Drug Resist Updates 44:15–25. https://doi.org/10.1016/j.drup.2019.06.001

    Article  Google Scholar 

  3. Ezhevsky SA, Ho A, Becker-Hapak M, Davis PK, Dowdy SF (2001) Differential regulation of retinoblastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo. Mol Cell Biol 21:4773–4784. https://doi.org/10.1128/mcb.21.14.4773-4784.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie S, Metzger-Filho O, Hoog J, Ellis MJ, Ma CX, Ramm S, Krop IE, Winer EP, Roberts TM, Kim HJ, McAllister SS, Zhao JJ (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471–475. https://doi.org/10.1038/nature23465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mackay A, Burford A, Carvalho D, Izquierdo E, Fazal-Salom J, Taylor KR, Bjerke L, Clarke M, Vinci M, Nandhabalan M, Temelso S, Popov S, Molinari V, Raman P, Waanders AJ, Han HJ, Gupta S, Marshall L, Zacharoulis S, Vaidya S, Mandeville HC, Bridges LR, Martin AJ, Al-Sarraj S, Chandler C, Ng HK, Li X, Mu K, Trabelsi S, Brahim DH, Kisljakov AN, Konovalov DM, Moore AS, Carcaboso AM, Sunol M, de Torres C, Cruz O, Mora J, Shats LI, Stavale JN, Bidinotto LT, Reis RM, Entz-Werle N, Farrell M, Cryan J, Crimmins D, Caird J, Pears J, Monje M, Debily MA, Castel D, Grill J, Hawkins C, Nikbakht H, Jabado N, Baker SJ, Pfister SM, Jones DTW, Fouladi M, von Bueren AO, Baudis M, Resnick A, Jones C (2017) Integrated molecular meta-analysis of 1000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell 32:520-537e525. https://doi.org/10.1016/j.ccell.2017.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Asby DJ, Killick-Cole CL, Boulter LJ, Singleton WG, Asby CA, Wyatt MJ, Barua NU, Bienemann AS, Gill SS (2018) Combined use of CDK4/6 and mTOR inhibitors induce synergistic growth arrest of diffuse intrinsic pontine glioma cells via mutual downregulation of mTORC1 activity. Cancer Manage Res 10:3483–3500. https://doi.org/10.2147/cmar.S167095

    Article  CAS  Google Scholar 

  7. Barton KL, Misuraca K, Cordero F, Dobrikova E, Min HD, Gromeier M, Kirsch DG, Becher OJ (2013) PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS ONE 8:e77639. https://doi.org/10.1371/journal.pone.0077639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun Y, Sun Y, Zhang L, Xi Q (2019) Authors’ reply to “Translating palbociclib to the clinic for DIPG—what is truly achievable?” EBioMedicine 45:23–24. https://doi.org/10.1016/j.ebiom.2019.06.025

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sun Y, Sun Y, Yan K, Li Z, Xu C, Geng Y, Pan C, Chen X, Zhang L, Xi Q (2019) Potent anti-tumor efficacy of palbociclib in treatment-naïve H3.3K27M-mutant diffuse intrinsic pontine glioma. EBioMedicine 43:171–179. https://doi.org/10.1016/j.ebiom.2019.04.043

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3:1427–1438

    Article  CAS  PubMed  Google Scholar 

  11. Halvorson KG, Barton KL, Schroeder K, Misuraca KL, Hoeman C, Chung A, Crabtree DM, Cordero FJ, Singh R, Spasojevic I, Berlow N, Pal R, Becher OJ (2015) A high-throughput in vitro drug screen in a genetically engineered mouse model of diffuse intrinsic pontine glioma identifies BMS-754807 as a promising therapeutic agent. PLoS ONE 10:e0118926. https://doi.org/10.1371/journal.pone.0118926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Meel MH, de Gooijer MC, Guillén Navarro M, Waranecki P, Breur M, Buil LCM, Wedekind LE, Twisk JWR, Koster J, Hashizume R, Raabe EH, Montero Carcaboso A, Bugiani M, van Tellingen O, van Vuurden DG, Kaspers GJL, Hulleman E (2018) MELK inhibition in diffuse intrinsic pontine glioma. Clin Cancer Res 24:5645–5657. https://doi.org/10.1158/1078-0432.Ccr-18-0924

    Article  CAS  PubMed  Google Scholar 

  13. Warren KE (2018) Beyond the blood: brain barrier: the importance of central nervous system (CNS) pharmacokinetics for the treatment of CNS tumors, including diffuse intrinsic pontine glioma. Front Oncol 8:239. https://doi.org/10.3389/fonc.2018.00239

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mittapalli RK, Chung AH, Parrish KE, Crabtree D, Halvorson KG, Hu G, Elmquist WF, Becher OJ (2016) ABCG2 and ABCB1 limit the efficacy of dasatinib in a PDGF-B-driven brainstem glioma model. Mol Cancer Ther 15:819–829. https://doi.org/10.1158/1535-7163.Mct-15-0093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Veringa SJ, Biesmans D, van Vuurden DG, Jansen MH, Wedekind LE, Horsman I, Wesseling P, Vandertop WP, Noske DP, Kaspers GJ, Hulleman E (2013) In vitro drug response and efflux transporters associated with drug resistance in pediatric high grade glioma and diffuse intrinsic pontine glioma. PLoS ONE 8:e61512. https://doi.org/10.1371/journal.pone.0061512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dhillon S (2015) Palbociclib: first global approval. Drugs 75:543–551. https://doi.org/10.1007/s40265-015-0379-9

    Article  CAS  PubMed  Google Scholar 

  17. Stiller CA, Nectoux J (1994) International incidence of childhood brain and spinal tumours. Int J Epidemiol 23:458–464. https://doi.org/10.1093/ije/23.3.458

    Article  CAS  PubMed  Google Scholar 

  18. Hargrave D, Bartels U, Bouffet E (2006) Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 7:241–248. https://doi.org/10.1016/s1470-2045(06)70615-5

    Article  PubMed  Google Scholar 

  19. Rashed WM, Maher E, Adel M, Saber O, Zaghloul MS (2019) Pediatric diffuse intrinsic pontine glioma: where do we stand? Cancer Metastasis Rev 38:759–770. https://doi.org/10.1007/s10555-019-09824-2

    Article  PubMed  Google Scholar 

  20. Lassman LP, Arjona VE (1967) Pontine gliomas of childhood. Lancet 1:913–915. https://doi.org/10.1016/s0140-6736(67)91485-7

    Article  CAS  PubMed  Google Scholar 

  21. Gwak HS, Park HJ (2017) Developing chemotherapy for diffuse pontine intrinsic gliomas (DIPG). Crit Rev Oncol/Hematol 120:111–119. https://doi.org/10.1016/j.critrevonc.2017.10.013

    Article  PubMed  Google Scholar 

  22. Wiese M, Hamdan FH, Kubiak K, Diederichs C, Gielen GH, Nussbaumer G, Carcaboso AM, Hulleman E, Johnsen SA, Kramm CM (2020) Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells. Cell Death Dis 11:673. https://doi.org/10.1038/s41419-020-02800-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ehteda A, Simon S, Franshaw L, Giorgi FM, Liu J, Joshi S, Rouaen JRC, Pang CNI, Pandher R, Mayoh C, Tang Y, Khan A, Ung C, Tolhurst O, Kankean A, Hayden E, Lehmann R, Shen S, Gopalakrishnan A, Trebilcock P, Gurova K, Gudkov AV, Norris MD, Haber M, Vittorio O, Tsoli M, Ziegler DS (2021) Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Rep 35:108994. https://doi.org/10.1016/j.celrep.2021.108994

    Article  CAS  PubMed  Google Scholar 

  24. Carvalho DM, Richardson PJ, Olaciregui N, Stankunaite R, Lavarino C, Molinari V, Corley EA, Smith DP, Ruddle R, Donovan A, Pal A, Raynaud FI, Temelso S, Mackay A, Overington JP, Phelan A, Sheppard D, Mackinnon A, Zebian B, Al-Sarraj S, Merve A, Pryce J, Grill J, Hubank M, Cruz O, La Morales A, Mueller S, Carcaboso AM, Carceller F, Jones C (2022) Repurposing vandetanib plus everolimus for the treatment of ACVR1-mutant diffuse intrinsic pontine glioma. Cancer Discov 12:416–431. https://doi.org/10.1158/2159-8290.Cd-20-1201

    Article  CAS  PubMed  Google Scholar 

  25. Anastas JN, Zee BM, Kalin JH, Kim M, Guo R, Alexandrescu S, Blanco MA, Giera S, Gillespie SM, Das J, Wu M, Nocco S, Bonal DM, Nguyen QD, Suva ML, Bernstein BE, Alani R, Golub TR, Cole PA, Filbin MG, Shi Y (2019) Re-programing chromatin with a bifunctional LSD1/HDAC inhibitor induces therapeutic differentiation in DIPG. Cancer Cell 36:528–544e510. https://doi.org/10.1016/j.ccell.2019.09.005

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Zhou L, Safran H, Borsuk R, Lulla R, Tapinos N, Seyhan AA, El-Deiry WS (2021) EZH2i EPZ-6438 and HDACi vorinostat synergize with ONC201/TIC10 to activate integrated stress response, DR5, reduce H3K27 methylation, ClpX and promote apoptosis of multiple tumor types including DIPG. Neoplasia 23:792–810. https://doi.org/10.1016/j.neo.2021.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piunti A, Hashizume R, Morgan MA, Bartom ET, Horbinski CM, Marshall SA, Rendleman EJ, Ma Q, Takahashi YH, Woodfin AR, Misharin AV, Abshiru NA, Lulla RR, Saratsis AM, Kelleher NL, James CD, Shilatifard A (2017) Therapeutic targeting of polycomb and BET bromodomain proteins in diffuse intrinsic pontine gliomas. Nat Med 23:493–500. https://doi.org/10.1038/nm.4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166. https://doi.org/10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  29. Pardridge WM (2005) The blood–brain barrier: bottleneck in brain drug development. NeuroRx 2:3–14. https://doi.org/10.1602/neurorx.2.1.3

    Article  PubMed  PubMed Central  Google Scholar 

  30. Taylor JW, Parikh M, Phillips JJ, James CD, Molinaro AM, Butowski NA, Clarke JL, Oberheim-Bush NA, Chang SM, Berger MS, Prados M (2018) Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neuro Oncol 140:477–483. https://doi.org/10.1007/s11060-018-2977-3

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by Multicenter clinical big data study and multi-path tumorigenesis mechanisms and precision treatment research on brainstem glioma (JINGYIYAN2018-7).

Author information

Authors and Affiliations

Authors

Contributions

PZ: writing—original draft and conceptualization; YL: formal analysis and investigation; TW: Bioinformatics analysis; XL: Drug design; ZW, JZ: methodology and resources; XL and LZ: review and editing, and supervision. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Xuebin Liao or Liwei Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was approved by the human research ethics committee of Beijing Tiantan Hospital. The written informed consent was obtained from the subjects.

Consent to participate

Written informed consent was obtained from the parents.

Consent for publication

Written informed consent for publication was obtained from all participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3434.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, P., Li, Y., Wang, T. et al. A novel CDK4/6 inhibitor combined with irradiation demonstrates potent anti-tumor efficacy in diffuse midline glioma. J Neurooncol 163, 159–171 (2023). https://doi.org/10.1007/s11060-023-04323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-023-04323-5

Keywords

Navigation