Skip to main content

Advertisement

Log in

Next generation sequencing in adult patients with glioblastoma in Switzerland: a multi-centre decision analysis

  • Research
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Glioblastoma is the most common malignant primary brain tumour in adults and driven by various genomic alterations. Next generation sequencing (NGS) provides timely information about the genetic landscape of tumours and might detect targetable mutations. To date, differences exist in the application and NGS assays used as it remains unclear to what extent these variants may affect clinical decision making. In this survey-based study, we investigated the use of NGS in adult patients with glioblastoma in Switzerland.

Methods

All eight primary care centres for Neuro-Oncology in Switzerland participated in this survey. The NGS assays used as well as the criteria for the application of NGS in newly diagnosed glioblastoma were investigated. Decision trees were analysed for consensus and discrepancies using the objective consensus methodology.

Results

Seven out of eight centres perform NGS in patients with newly diagnosed glioblastoma using custom made or commercially available assays. The criteria most relevant to decision making were age, suitability of standard treatment and fitness. NGS is most often used in fitter patients under the age of 60 years who are not suitable for standard therapy, while it is rarely performed in patients in poor general health.

Conclusion

NGS is frequently applied in glioblastomas in adults in Neuro-Oncology centres in Switzerland despite seldom changing the course of treatment to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The dataset generated and analysed during the current study is available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18(3):170–186. https://doi.org/10.1038/s41571-020-00447-z

    Article  PubMed  Google Scholar 

  2. Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C et al (2015) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. NeuroOncology. https://doi.org/10.1093/neuonc/nov189

    Article  Google Scholar 

  3. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D et al (2021) The 2021 WHO classification of tumors of the central nervous system: a summary. NeuroOncology 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  Google Scholar 

  4. Coleman C, Stoller S, Grotzer M, Stucklin AG, Nazarian J, Mueller S (2020) Pediatric hemispheric high-grade glioma: targeting the future. Cancer Metastasis Rev 39(1):245–260. https://doi.org/10.1007/s10555-020-09850-5

    Article  PubMed  Google Scholar 

  5. Arakaki AKS, Szulzewsky F, Gilbert MR, Gujral TS, Holland EC (2021) Utilizing preclinical models to develop targeted therapies for rare central nervous system cancers. NeuroOncology. https://doi.org/10.1093/neuonc/noab183

    Article  Google Scholar 

  6. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJBB et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  PubMed  Google Scholar 

  7. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  8. Hegi ME, Diserens A-C, Gorlia T, Hamou M-F, de Tribolet N, Weller M et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003. https://doi.org/10.1056/NEJMoa043331

    Article  CAS  PubMed  Google Scholar 

  9. Wick W, Platten M, Meisner C, Felsberg J, Tabatabai G, Simon M et al (2012) Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly: the NOA-08 randomised, phase 3 trial. Lancet Oncol 13(7):707–715. https://doi.org/10.1016/S1470-2045(12)70164-X

    Article  CAS  PubMed  Google Scholar 

  10. Malmström A, Grønberg BH, Marosi C, Stupp R, Frappaz D, Schultz H et al (2012) Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma: the nordic randomised, phase 3 trial. Lancet Oncol 13(9):916–926. https://doi.org/10.1016/S1470-2045(12)70265-6

    Article  CAS  PubMed  Google Scholar 

  11. Weller M, Tabatabai G, Kästner B, Felsberg J, Steinbach JP, Wick A et al (2015) MGMT promoter methylation is a strong prognostic biomarker for benefit from dose-intensified temozolomide rechallenge in progressive glioblastoma: the director trial. Clin Cancer Res 21(9):2057–2064. https://doi.org/10.1158/1078-0432.CCR-14-2737

    Article  CAS  PubMed  Google Scholar 

  12. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H et al (2017) Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 18(10):1373–1385. https://doi.org/10.1016/S1470-2045(17)30517-X

    Article  CAS  PubMed  Google Scholar 

  13. Reardon DA, Desjardins A, Vredenburgh JJ, O’Rourke DM, Tran DD, Fink KL et al (2020) Rindopepimut with bevacizumab for patients with relapsed EGFRvIII-expressing glioblastoma (ReACT): results of a double-blind randomized phase II trial. Clin Cancer Res 26(7):1586–1594. https://doi.org/10.1158/1078-0432.CCR-18-1140

    Article  CAS  PubMed  Google Scholar 

  14. Aquilanti E, Kageler L, Wen PY, Meyerson M (2021) Telomerase as a therapeutic target in glioblastoma. NeuroOncology 23(12):2004–2013. https://doi.org/10.1093/neuonc/noab203

    Article  Google Scholar 

  15. Pratt D, Sahm F, Aldape K (2021) DNA methylation profiling as a model for discovery and precision diagnostics in neuro-oncology. NeuroOncology. https://doi.org/10.1093/neuonc/noab143

    Article  Google Scholar 

  16. Miklja Z, Pasternak A, Stallard S, Nicolaides T, Kline-Nunnally C, Cole B et al (2019) Molecular profiling and targeted therapy in pediatric gliomas: review and consensus recommendations. NeuroOncology. https://doi.org/10.1093/neuonc/noz022

    Article  Google Scholar 

  17. Na K, Kim HS, Shim HS, Chang JH, Kang SG, Kim SH (2019) Targeted next-generation sequencing panel (TruSight Tumor 170) in diffuse glioma: a single institutional experience of 135 cases. J Neurooncol 142(3):445–454. https://doi.org/10.1007/s11060-019-03114-1

    Article  CAS  PubMed  Google Scholar 

  18. Shin H, Sa JK, Bae JS, Koo H, Jin S, Cho HJ et al (2020) Clinical targeted next-generation sequencing panels for detection of somatic variants in gliomas. Cancer Res Treat 52(1):41–50. https://doi.org/10.4143/crt.2019.036

    Article  CAS  PubMed  Google Scholar 

  19. Lorenz J, Rothhammer-Hampl T, Zoubaa S, Bumes E, Pukrop T, Kölbl O et al (2020) A comprehensive DNA panel next generation sequencing approach supporting diagnostics and therapy prediction in neurooncology. Acta Neuropathol Commun 8(1):1–15. https://doi.org/10.1186/s40478-020-01000-w

    Article  CAS  Google Scholar 

  20. Woo HY, Na K, Yoo J, Chang JH, Park YN, Shim HS et al (2020) Glioblastomas harboring gene fusions detected by next-generation sequencing. Brain Tumor Pathol. https://doi.org/10.1007/s10014-020-00377-9

    Article  PubMed  Google Scholar 

  21. Sahm F, Schrimpf D, Jones DTW, Meyer J, Kratz A, Reuss D et al (2016) Next-generation sequencing in routine brain tumor diagnostics enables an integrated diagnosis and identifies actionable targets. Acta Neuropathol 131(6):903–910. https://doi.org/10.1007/s00401-015-1519-8

    Article  CAS  PubMed  Google Scholar 

  22. Wick W, Dettmer S, Berberich A, Kessler T, Karapanagiotou-Schenkel I, Wick A et al (2019) N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. NeuroOncology. https://doi.org/10.1093/neuonc/noy161

    Article  Google Scholar 

  23. Nie Q, Hsiao MC, Chandok H, Rowe S, Prego M, Meyers B et al (2020) Molecular profiling of CNS tumors for the treatment and management of disease. J Clin Neurosci 1(71):311–315. https://doi.org/10.1016/j.jocn.2019.11.035

    Article  Google Scholar 

  24. Torre M, Vasudevaraja V, Serrano J, DeLorenzo M, Malinowski S, Blandin A-F et al (2020) Molecular and clinicopathologic features of gliomas harboring NTRK fusions. Acta Neuropathol Commun 8(1):107. https://doi.org/10.1186/s40478-020-00980-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Andrews JP, Coleman C, Hastings C, Sun PP (2021) Oncogenic NTRK fusion in congenital spinal cord glioblastoma: sequencing directs treatment. Lancet Lond Engl 398(10317):2185. https://doi.org/10.1016/S0140-6736(21)02287-X

    Article  Google Scholar 

  26. Glatzer M, Panje CM, Sirén C, Cihoric N, Putora PM (2020) Decision making criteria in oncology. Oncology 18:1–9. https://doi.org/10.1159/000492272

    Article  Google Scholar 

  27. Panje CM, Putora PM, Hundsberger T, Hottinger AF, Roelcke U, Pesce G et al (2019) Impact of treatment decision algorithms on treatment costs in recurrent glioblastoma: a health economic study. Swiss Med Wkly 2(149):w20153. https://doi.org/10.4414/smw.2019.20153

    Article  Google Scholar 

  28. Putora PM, Panje CM, Papachristofilou A, Dal Pra A, Hundsberger T, Plasswilm L (2014) Objective consensus from decision trees. Radiat Oncol 9(1):270

    Article  Google Scholar 

  29. Putora PM, Panje CM, Papachristofilou A, Dal Pra A, Hundsberger T, Plasswilm L (2014) Objective consensus from decision trees. Radiat Oncol 5(9):270. https://doi.org/10.1186/s13014-014-0270-y

    Article  Google Scholar 

  30. Panje CM, Glatzer M, von Rappard J, Rothermundt C, Hundsberger T, Zumstein V et al (2017) Applied swarm-based medicine: collecting decision trees for patterns of algorithms analysis. BMC Med Res Methodol 17(1):123. https://doi.org/10.1186/s13014-014-0270-y

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hundsberger T, Hottinger AF, Roelcke U, Roth P, Migliorini D, Dietrich PY et al (2016) Patterns of care in recurrent glioblastoma in Switzerland: a multicentre national approach based on diagnostic nodes. J Neurooncol 126(1):175–183. https://doi.org/10.1007/s11060-015-1957-0

    Article  CAS  PubMed  Google Scholar 

  32. Wick W, Puduvalli VK, Chamberlain MC, van den Bent MJ, Carpentier AF, Cher LM et al (2010) Phase III study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28(7):1168–1174. https://doi.org/10.1200/JCO.2009.23.2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A et al (2014) Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol 31(26):3212–3218. https://doi.org/10.1200/JCO.2012.47.2464

    Article  CAS  Google Scholar 

  34. Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I et al (2017) Lomustine and bevacizumab in progressive glioblastoma. N Engl J Med 377(20):1954–1963. https://doi.org/10.1056/NEJMoa1707358

    Article  CAS  PubMed  Google Scholar 

  35. Le Rhun E, Preusser M, Roth P, Reardon DA, van den Bent M, Wen P et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896. https://doi.org/10.1016/j.ctrv.2019.101896

    Article  CAS  PubMed  Google Scholar 

  36. Lombardi G, Del Bianco P, Brandes AA, Eoli M, Rudà R, Ibrahim T et al (2021) Patient-reported outcomes in a phase II randomised study of regorafenib compared with lomustine in patients with relapsed glioblastoma (the REGOMA trial). Eur J Cancer 155:179–190. https://doi.org/10.1016/j.ejca.2021.06.055

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y, Long P, Wang Y, Ma W (2020) NTRK fusions and TRK inhibitors: potential targeted therapies for adult glioblastoma. Front Oncol 10:593578. https://doi.org/10.3389/fonc.2020.593578

    Article  PubMed  PubMed Central  Google Scholar 

  38. Frank MO, Koyama T, Rhrissorrakrai K, Robine N, Utro F, Emde A-K et al (2019) Sequencing and curation strategies for identifying candidate glioblastoma treatments. BMC Med Genomics 12(1):56. https://doi.org/10.1186/s12920-019-0500-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schou Nørøxe D, Flynn A, Westmose Yde C, Østrup O, Cilius Nielsen F, Skjøth-Rasmussen J et al (2022) Tumor mutational burden and purity adjustment before and after treatment with temozolomide in 27 paired samples of glioblastoma: a prospective study. Mol Oncol 16(1):206–218. https://doi.org/10.1002/1878-0261.13015

    Article  CAS  PubMed  Google Scholar 

  40. Lim-Fat MJ, Youssef GC, Touat M et al (2021) Clinical utility of targeted next-generation sequencing assay in IDH-wildtype glioblastoma for therapy decision-making. NeuroOncology. https://doi.org/10.1093/neuonc/noab282

    Article  Google Scholar 

  41. Wen P, Weller M, Lee EQ et al (2020) Glioblastoma in adults: a society for neuro-oncology (SNO) and European society of neurooncology (EANO) consensus review on current management and future directions. NeuroOncology 22(8):1073–1113. https://doi.org/10.1093/neuonc/noaa106

    Article  CAS  Google Scholar 

  42. van den Bent M, Gan HK, Lassman AB et al (2017) Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol 80(6):1209–1217. https://doi.org/10.1007/s00280-017-3451-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schröder L et al (2015) CDK4/6 inhibitor PD0332991 in glioblastoma treatment: does it have a future? Front Oncol 30(5):259. https://doi.org/10.3389/fonc.2015.00259

    Article  Google Scholar 

  44. Zhao HF, Wang J, Shao W et al (2017) Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer 16(1):100. https://doi.org/10.1186/s12943-017-0670-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wen et al (2022) Dabrafenib plus trametinib in patients with BRAF V600E-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol 23(1):53–64. https://doi.org/10.1016/S1470-2045(21)00578-7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the members of the local interdisciplinary CNS tumour board for providing data for this investigation.

Funding

TH and PMP received an unrestricted grant to the institutions from Bayer AG (Switzerland).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, data collection and design. Material preparation and analysis were performed by MCN, AMZ, PMP and TH. The first draft of the manuscript was written by TH and AZ. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Hundsberger.

Ethics declarations

Conflict of interest

MW has received research grants from Apogenix, Merck, Sharp & Dohme, Merck (EMD), Philogen and Quercis, and honoraria for lectures or advisory board participation or consulting from Adastra, Bayer, Bristol Meyer Squibb, Medac, Merck, Sharp & Dohme, Merck (EMD), Nerviano Medical Sciences, Novartis, Orbus and Philogen. HL received travel grants and consultant fees from Bristol-Myers Squibb (BMS) and Merck, Sharp and Dohme (MSD) and received research support from BMS, Novartis, GlycoEra and Palleon Pharmaceuticals. MCN has received a research grant from Novocure, honoraria for consulting or lectures from WISE and MSD. On behalf of all other authors, the corresponding author states that there is no conflict of interest.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeitlberger, A.M., Putora, P.M., Hofer, S. et al. Next generation sequencing in adult patients with glioblastoma in Switzerland: a multi-centre decision analysis. J Neurooncol 158, 359–367 (2022). https://doi.org/10.1007/s11060-022-04022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04022-7

Keywords

Navigation