Skip to main content
Log in

Cranial sonolucent prosthesis: a window of opportunity for neuro-oncology (and neuro-surgery)

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Introduction

Ultrasound (US) is a versatile technology, able to provide a real-time and multiparametric intraoperative imaging, and a promising way to treat neuro-oncological patients outside the operating room. Anyhow, its potential is limited both in imaging and therapeutic purposes by the existence of the bone shielding. To enhance the spectrum of uses, our group has designed a dedicated US-translucent cranial prosthesis. Herein, we provide the proof of concept of a long-term US-based follow-up and a potential bedside therapeutic exploitation of US.

Methods

The prosthesis was first implanted in a cadaveric specimen to record any issue related to the cranioplasty procedure. Hence, the device was implanted in a patient undergoing surgery for a multi-recurrent anaplastic oligodendroglioma. US multiparametric scans through the device were acquired at 3, 6, 9, and 30 months after the procedure.

Results

The prosthesis could be modeled and implanted through ordinary instruments, with no concerns over safety and feasibility. Trans-prosthesis multiparametric US imaging was feasible, with image quality comparable to intraoperative US. Long-term follow-up in an outpatient setting was possible with no adverse events. Trans-prosthesis mechanical interaction with microbubbles was also feasible during follow-up.

Conclusions

This report provides the first proof of concept for a potential breakthrough in the management of neuro-oncological patients. Indeed, through the implantation of an artificial acoustic window, the road is set to employ US both for a more dynamic long-term follow-up, and for US-guided therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Erdoan N, Tucer B, Mavl E et al (2005) Ultrasound guidance in intracranial tumor resection: Correlation with postoperative magnetic resonance findings. Acta radiol 46:743–749. https://doi.org/10.1080/02841850500223208

    Article  Google Scholar 

  2. Serra C, Stauffer A, Actor B et al (2012) Intraoperative high frequency ultrasound in intracerebral high-grade tumors. Ultraschall der Medizin 33:E306–E312. https://doi.org/10.1055/s-0032-1325369

    Article  CAS  Google Scholar 

  3. Coburger J, Scheuerle A, Kapapa T et al (2015) Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev 38:499–509. https://doi.org/10.1007/s10143-015-0627-1

    Article  PubMed  Google Scholar 

  4. Coburger J, König RW, Scheuerle A et al (2014) Navigated high frequency ultrasound: Description of technique and clinical comparison with conventional intracranial ultrasound. World Neurosurg 82:366–375. https://doi.org/10.1016/j.wneu.2014.05.025

    Article  PubMed  Google Scholar 

  5. Mahboob S, McPhillips R, Qiu Z et al (2016) Intraoperative ultrasound-guided resection of gliomas: a meta-analysis and review of the literature. World Neurosurg 92:255–263. https://doi.org/10.1016/j.wneu.2016.05.007

    Article  PubMed  Google Scholar 

  6. Sæther CA, Torsteinsen M, Torp SH et al (2012) Did survival improve after the implementation of intraoperative neuronavigation and 3d ultrasound in glioblastoma surgery? A retrospective analysis of 192 primary operations. J Neurol Surgery A 73:73–78. https://doi.org/10.1055/s-0031-1297247

    Article  Google Scholar 

  7. Prada F, Solbiati L, Martegani A, DiMeco F (2016) Intraoperative ultrasound (IOUS) in neurosurgery: from standard B-mode to elastosonography. Springer International Publishing, Cham

    Book  Google Scholar 

  8. Del Bene M, Perin A, Casali C et al (2018) Advanced ultrasound imaging in glioma surgery: beyond gray-scale B-mode. Front Oncol 8:576. https://doi.org/10.3389/fonc.2018.00576

    Article  PubMed  PubMed Central  Google Scholar 

  9. Prada F, Perin A, Martegani A et al (2014) Intraoperative contrast-enhanced ultrasound for brain tumor surgery. Neurosurgery 74:542–552. https://doi.org/10.1227/NEU.0000000000000301 (Discussion 552)

    Article  PubMed  Google Scholar 

  10. Chauvet D, Imbault M, Capelle L et al (2016) In vivo measurement of brain tumor elasticity using intraoperative shear wave elastography. Ultraschall der Medizin 37:584–590. https://doi.org/10.1055/s-0034-1399152

    Article  CAS  Google Scholar 

  11. Prada F, Del Bene M, Moiraghi A et al (2015) From grey scale B-mode to elastosonography: multimodal ultrasound imaging in meningioma surgery-pictorial essay and literature review. Biomed Res Int 2015:925729. https://doi.org/10.1155/2015/925729

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prada F, Del Bene M, Rampini A et al (2019) Intraoperative strain elastosonography in brain tumor surgery. Oper Neurosurg (Hagerstown) 17:227–236. https://doi.org/10.1093/ons/opy323

    Article  Google Scholar 

  13. Cepeda S, Barrena C, Arrese I et al (2020) Intraoperative ultrasonographic elastography: A semi-quantitative analysis of brain tumor elasticity patterns and peritumoral region. World Nurosurg. https://doi.org/10.1016/j.wneu.2019.11.133

    Article  Google Scholar 

  14. Cepeda S, García-García S, Arrese I et al (2021) Comparison of intraoperative ultrasound B-mode and strain elastography for the differentiation of glioblastomas from solitary brain metastases. An automated deep learning approach for image analysis. Front Oncol 10:1. https://doi.org/10.3389/fonc.2020.590756

    Article  Google Scholar 

  15. Cepeda S, García-García S, Velasco-Casares M et al (2021) Is there a relationship between the elasticity of brain tumors, changes in diffusion tensor imaging, and histological findings? A pilot study using intraoperative ultrasound elastography. Brain Sci 11:1–13. https://doi.org/10.3390/brainsci11020271

    Article  Google Scholar 

  16. Chan HW, Uff C, Chakraborty A et al (2021) Clinical application of shear wave elastography for assisting brain tumor resection. Front Oncol 11:1. https://doi.org/10.3389/fonc.2021.619286

    Article  Google Scholar 

  17. Krishna V, Sammartino F, Rezai A (2018) A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology advances in diagnosis and treatment. JAMA Neurol 75:246–254. https://doi.org/10.1001/jamaneurol.2017.3129

    Article  PubMed  Google Scholar 

  18. Burgess A, Shah K, Hough O, Hynynen K (2015) Focused ultrasound-mediated drug delivery through the blood-brain barrier. Expert Rev Neurother 15:477–491. https://doi.org/10.1586/14737175.2015.1028369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu L, Nazeri A, Pacia CP et al (2020) Focused ultrasound for safe and effective release of brain tumor biomarkers into the peripheral circulation. PLoS ONE 15:e0234182. https://doi.org/10.1371/journal.pone.0234182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carpentier A, Canney M, Vignot A et al (2016) Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med 8:343re2. https://doi.org/10.1126/scitranslmed.aaf6086

    Article  CAS  PubMed  Google Scholar 

  21. Bunevicius A, McDannold NJ, Golby AJ (2020) Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg 19:9–18. https://doi.org/10.1093/ons/opz374

    Article  Google Scholar 

  22. Prada F, Kalani MYS, Yagmurlu K et al (2019) Applications of focused ultrasound in cerebrovascular diseases and brain tumors. Neurother J Am Soc Exp Neurother 16:67–87. https://doi.org/10.1007/s13311-018-00683-3

    Article  Google Scholar 

  23. Le Rhun E, Preusser M, Roth P et al (2019) Molecular targeted therapy of glioblastoma. Cancer Treat Rev 80:101896. https://doi.org/10.1016/j.ctrv.2019.101896

    Article  CAS  PubMed  Google Scholar 

  24. Mainprize T, Lipsman N, Huang Y et al (2019) Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 9:321. https://doi.org/10.1038/s41598-018-36340-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Phenix CP, Togtema M, Pichardo S et al (2014) High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J Pharm Pharm Sci 17:136–153. https://doi.org/10.18433/j3zp5f

    Article  PubMed  Google Scholar 

  26. Ammi AY, Douglas Mast T, Huang I-H et al (2008) Characterization of ultrasound propagation through ex-vivo human temporal bone HHS public access author manuscript. Ultrasound Med Biol 34:1578–1589. https://doi.org/10.1016/j.ultrasmedbio.2008.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. Prada F, Franzini A, Moosa S et al (2020) In vitro and in vivo characterization of a cranial window prosthesis for diagnostic and therapeutic cerebral ultrasound. J Neurosurg. https://doi.org/10.3171/2019.10.JNS191674

    Article  PubMed  Google Scholar 

  28. Franzini A, Moosa S, Servello D et al (2019) Ablative brain surgery: an overview. Int J Hyperthermia 36:64–80. https://doi.org/10.1080/02656736.2019.1616833

    Article  PubMed  Google Scholar 

  29. Chen K-T, Lin Y-J, Chai W-Y et al (2020) Neuronavigation-guided focused ultrasound (NaviFUS) for transcranial blood-brain barrier opening in recurrent glioblastoma patients: clinical trial protocol. Ann Transl Med 8:673–673. https://doi.org/10.21037/ATM-20-344

    Article  PubMed  PubMed Central  Google Scholar 

  30. Spena G, Guerrini F, Grimod G et al (2019) Polymethyl methacrylate cranioplasty is an effective ultrasound window to explore intracranial structures: preliminary experience and future perspectives. World Neurosurg 127:e1013–e1019. https://doi.org/10.1016/j.wneu.2019.04.026

    Article  PubMed  Google Scholar 

  31. Belzberg M, Ben SN, Yuhanna E et al (2019) Sonolucent cranial implants: cadaveric study and clinical findings supporting diagnostic and therapeutic transcranioplasty ultrasound. J Craniofac Surg 30:1456–1461. https://doi.org/10.1097/SCS.0000000000005454

    Article  PubMed  PubMed Central  Google Scholar 

  32. Belzberg M, Ben SN, Lu A et al (2019) Transcranioplasty ultrasound through a sonolucent cranial implant made of polymethyl methacrylate: phantom study comparing ultrasound, computed tomography, and magnetic resonance imaging. J Craniofac Surg 30:E626–E629. https://doi.org/10.1097/SCS.0000000000005651

    Article  PubMed  Google Scholar 

  33. Mursch K, Behnke-Mursch J (2018) Polyether ether ketone cranioplasties are permeable to diagnostic ultrasound. World Neurosurg 117:142–143. https://doi.org/10.1016/j.wneu.2018.06.064

    Article  PubMed  Google Scholar 

  34. Tobias J, Hynynen K, Roemer R et al (1987) An ultrasound window to perform scanned, focused ultrasound hyperthermia treatments of brain tumors. Med Phys 14:228–234. https://doi.org/10.1118/1.596074

    Article  CAS  PubMed  Google Scholar 

  35. Giussani C, Riva M, Djonov V et al (2017) Brain ultrasound rehearsal before surgery: a pilot cadaver study. Clin Anat 30:1017–1023. https://doi.org/10.1002/ca.22919

    Article  PubMed  Google Scholar 

  36. Prada F, Del BM, Fornaro R et al (2016) Identification of residual tumor with intraoperative contrast-enhanced ultrasound during glioblastoma resection. Neurosurg Focus 40:E7. https://doi.org/10.3171/2015.11.FOCUS15573

    Article  PubMed  Google Scholar 

  37. Tranquart F, Dujardin PA, Bouché O et al (2017) Value of contrast-enhanced ultrasound quantification criteria for identifying patients not responding to bevacizumab-based therapy for colorectal liver metastases. Ultraschall der Medizin 39:544–558. https://doi.org/10.1055/s-0043-122497

    Article  Google Scholar 

  38. Amadori M, Barone D, Scarpi E et al (2018) Dynamic contrast-enhanced ultrasonography (D-CEUS) for the early prediction of bevacizumab efficacy in patients with metastatic colorectal cancer. Eur Radiol 28:2969–2978. https://doi.org/10.1007/s00330-017-5254-5

    Article  PubMed  Google Scholar 

  39. Wolff A, Santiago GF, Belzberg M et al (2018) Adult cranioplasty reconstruction with customized cranial implants: preferred technique, timing, and biomaterials. J Craniofac Surg 29:887–894. https://doi.org/10.1097/SCS.0000000000004385

    Article  PubMed  Google Scholar 

  40. Wu SY, Aurup C, Sanchez CS et al (2018) Efficient blood-brain barrier opening in primates with neuronavigation-guided ultrasound and real-time acoustic mapping. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-25904-9

    Article  CAS  Google Scholar 

  41. Xu Y, Cui H, Zhu Q et al (2016) Unilateral opening of rat blood-brain barrier assisted by diagnostic ultrasound targeted microbubbles destruction. Biomed Res Int. https://doi.org/10.1155/2016/4759750

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao B, Chen Y, Liu J et al (2018) Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice. Oncotarget 9:4897–4914. https://doi.org/10.18632/oncotarget.23527

    Article  PubMed  Google Scholar 

  43. Bing KF, Howlesa GP, Qib Yi, Palmeria ML, Nightingale KR (2015) Blood–Brain Barrier (BBB) disruption using a diagnostic ultrasound scanner and definity® in mice. J Investig Dermatol Ultrasound Med Bio 135:612–615. https://doi.org/10.1038/jid.2014.371

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MDB, LR, GC, LS, FP, FDM. The first draft of the manuscript was written by LR and MDB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Massimiliano Del Bene.

Ethics declarations

Conflict of interest

FP and FDM have patented the prosthesis LS, FP and FDM are stockholders of “Intelligenza Trasparente SRL”, the company which manufactures the prosthesis.

Ethical approval

The procedure was approved by the Italian Ministry of Health.

Consent to participate

Informed consent was obtained.

Consent for publication

Patient signed informed consent regarding publishing his data and photographs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11060_2021_3929_MOESM1_ESM.tif

Supplementary file1 (TIF 69807 KB) Supplementary Figure 1 Trans-prosthesis multiparametric US imaging is feasible. In outpatient setting, the prosthesis allows to acquire B-mode (A), CEUS (B), color doppler (C), power doppler (D), micro-V doppler (E) and fusion imaging (F) scans

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Bene, M., Raspagliesi, L., Carone, G. et al. Cranial sonolucent prosthesis: a window of opportunity for neuro-oncology (and neuro-surgery). J Neurooncol 156, 529–540 (2022). https://doi.org/10.1007/s11060-021-03929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03929-x

Keywords

Navigation