Skip to main content

Advertisement

Log in

ERK inhibition in glioblastoma is associated with autophagy activation and tumorigenesis suppression

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Autophagy-dependent tumorigenic growth is one of the most commonly reported molecular mechanisms in glioblastoma (GBM) progression. However, the mechanistic correlation between autophagy and GBM is still largely unexplored, especially the roles of autophagy-related genes involved in GBM oncogenesis. In this study, we aimed to explore the genetic alterations that interact with both autophagic activity and GBM tumorigenesis, and to investigate the molecular mechanisms of autophagy involved in GBM cell death and survival.

Method

For this purpose, we systematically explored the alterations of autophagic molecules at the genome level in human GBM samples through deep RNA sequencing. The effect of genetic and pharmacologic inhibition of ERK on GBM growth in vitro and in vivo was researched. An image-based tracking analysis of LC3 using mCherry-eGFP-LC3 plasmid, and transmission electron microscopy were utilized to monitor autophagic flux. Immunoblot analysis was used to measure the related proteins.

Results

MAPK ERK expression was identified as one of the most probable autophagy-related transcriptional responses during GBM growth. The genetic and pharmacologic inhibition of ERK in vivo and in vitro led to cell death, demonstrating its critical role for GBM proliferation and survival. To our surprise, autophagic activities were excessively activated and resulted in cytodestructive effects on GBM cells upon ERK inhibitor treatment. Furthermore, based on the observation of downregulation of mTOR signaling, we speculated the ERK inhibitor-induced GBM cells death might depend on mTOR-mediated pathway, leading to autophagy dysregulation. Accordingly, the in vivo and in vitro experiments revealed that the mTOR inhibitor rapamycin further increased cell mortality and exhibited enhanced antitumor effect on GBM cells when co-treated with the ERK inhibitor.

Conclusion

Our data creatively demonstrated that the autophagy-related regulator ERK maintains autophagic activity during GBM tumorigenesis via mTOR signaling pathway. The pharmacologic inhibition of both mTOR and ERK signaling exhibited synergistic therapeutic effect on GBM growth in vivo and in vitro, which has certain novelty and may provide a potential therapeutic approach for GBM treatment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article, which are available from the corresponding author on reasonable request. No additional data are available.

Code availability

Not applicable.

References

  1. Diamandis P, Aldape K (2018) World Health Organization 2016 classification of central nervous system tumors. Neurol Clin 36:439–447. https://doi.org/10.1016/j.ncl.2018.04.003

    Article  PubMed  Google Scholar 

  2. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS (2019) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol 21:v1–v100. https://doi.org/10.1093/neuonc/noz150

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lukas RV, Wainwright DA, Ladomersky E, Sachdev S, Sonabend AM, Stupp R (2019) Newly diagnosed glioblastoma: a review on clinical management. Oncology 33:91–100

    PubMed  Google Scholar 

  4. Carlsson SK, Brothers SP, Wahlestedt C (2014) Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med 6:1359–1370. https://doi.org/10.15252/emmm.201302627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiation Oncology G, National Cancer Institute of Canada Clinical Trials G (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  6. Tabatabai G, Wakimoto H (2019) Glioblastoma: state of the art and future perspectives. Cancers. https://doi.org/10.3390/cancers11081091

    Article  PubMed  PubMed Central  Google Scholar 

  7. Claes A, Idema AJ, Wesseling P (2007) Diffuse glioma growth: a guerilla war. Acta Neuropathol 114:443–458. https://doi.org/10.1007/s00401-007-0293-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. de Groot JF, Fuller G, Kumar AJ, Piao Y, Eterovic K, Ji Y, Conrad CA (2010) Tumor invasion after treatment of glioblastoma with bevacizumab: radiographic and pathologic correlation in humans and mice. Neuro Oncol 12:233–242. https://doi.org/10.1093/neuonc/nop027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Strniskova M, Barancik M, Ravingerova T (2002) Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys 21:231–255

    CAS  PubMed  Google Scholar 

  10. Hottinger AF, Stupp R, Homicsko K (2014) Standards of care and novel approaches in the management of glioblastoma multiforme. Chin J Cancer 33:32–39. https://doi.org/10.5732/cjc.013.10207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee DH, Ryu HW, Won HR, Kwon SH (2017) Advances in epigenetic glioblastoma therapy. Oncotarget 8:18577–18589. https://doi.org/10.18632/oncotarget.14612

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jin T, Li D, Yang T, Liu F, Kong J, Zhou Y (2019) PTPN1 promotes the progression of glioma by activating the MAPK/ERK and PI3K/AKT pathways and is associated with poor patient survival. Oncol Rep 42:717–725. https://doi.org/10.3892/or.2019.7180

    Article  CAS  PubMed  Google Scholar 

  13. Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL (2020) ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19:1997–2007. https://doi.org/10.3892/etm.2020.8454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Batara DCR, Choi MC, Shin HU, Kim H, Kim SH (2021) Friend or foe: paradoxical roles of autophagy in gliomagenesis. Cells. https://doi.org/10.3390/cells10061411

    Article  PubMed  PubMed Central  Google Scholar 

  15. Buzun K, Gornowicz A, Lesyk R, Bielawski K, Bielawska A (2021) Autophagy modulators in cancer therapy. Int J Mol Sci. https://doi.org/10.3390/ijms22115804

    Article  PubMed  PubMed Central  Google Scholar 

  16. Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M (2019) Autophagy in human health and disease: novel therapeutic opportunities. Antioxid Redox Signal 30:577–634. https://doi.org/10.1089/ars.2017.7234

    Article  CAS  PubMed  Google Scholar 

  17. Liu X, Zhao P, Wang X, Wang L, Zhu Y, Song Y, Gao W (2019) Correction to: celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J Exp Clin Cancer Res 38:284. https://doi.org/10.1186/s13046-019-1285-x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Howarth A, Madureira PA, Lockwood G, Storer LCD, Grundy R, Rahman R, Pilkington GJ, Hill R (2019) Modulating autophagy as a therapeutic strategy for the treatment of paediatric high-grade glioma. Brain Pathol 29:707–725. https://doi.org/10.1111/bpa.12729

    Article  PubMed  PubMed Central  Google Scholar 

  19. White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12:401–410. https://doi.org/10.1038/nrc3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ciechomska IA (2018) The role of autophagy in cancer—characterization of crosstalk between apoptosis and autophagy; autophagy as a new therapeutic strategy in glioblastoma. Postep Biochem 64:119–128. https://doi.org/10.18388/pb.2018_121

    Article  Google Scholar 

  21. Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: pathogenesis and therapy. Brain Pathol 28:3–13. https://doi.org/10.1111/bpa.12545

    Article  CAS  PubMed  Google Scholar 

  22. Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X, Snyder E, Santanam U, Dipaola RS, Jacks T, Rabinowitz JD, White E (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461. https://doi.org/10.1101/gad.219642.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kimmelman AC, White E (2017) Autophagy and tumor metabolism. Cell Metab 25:1037–1043. https://doi.org/10.1016/j.cmet.2017.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bhutia SK, Mukhopadhyay S, Sinha N, Das DN, Panda PK, Patra SK, Maiti TK, Mandal M, Dent P, Wang XY, Das SK, Sarkar D, Fisher PB (2013) Autophagy: cancer’s friend or foe? Adv Cancer Res 118:61–95. https://doi.org/10.1016/B978-0-12-407173-5.00003-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shao N, Mao J, Xue L, Wang R, Zhi F, Lan Q (2019) Carnosic acid potentiates the anticancer effect of temozolomide by inducing apoptosis and autophagy in glioma. J Neurooncol 141:277–288. https://doi.org/10.1007/s11060-018-03043-5

    Article  CAS  PubMed  Google Scholar 

  26. Trejo-Solis C, Serrano-Garcia N, Escamilla-Ramirez A, Castillo-Rodriguez RA, Jimenez-Farfan D, Palencia G, Calvillo M, Alvarez-Lemus MA, Flores-Najera A, Cruz-Salgado A, Sotelo J (2018) Autophagic and apoptotic pathways as targets for chemotherapy in glioblastoma. Int J Mol Sci. https://doi.org/10.3390/ijms19123773

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guo Z, Guozhang H, Wang H, Li Z, Liu N (2019) Ampelopsin inhibits human glioma through inducing apoptosis and autophagy dependent on ROS generation and JNK pathway. Biomed Pharmacother 116:108524. https://doi.org/10.1016/j.biopha.2018.12.136

    Article  CAS  PubMed  Google Scholar 

  28. Chen JH, Zhang P, Chen WD, Li DD, Wu XQ, Deng R, Jiao L, Li X, Ji J, Feng GK, Zeng YX, Jiang JW, Zhu XF (2015) ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11:239–252. https://doi.org/10.1080/15548627.2015.1009767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jutten B, Keulers TG, Peeters HJM, Schaaf MBE, Savelkouls KGM, Compter I, Clarijs R, Schijns O, Ackermans L, Teernstra OPM, Zonneveld MI, Colaris RME, Dubois L, Vooijs MA, Bussink J, Sotelo J, Theys J, Lammering G, Rouschop KMA (2018) EGFRvIII expression triggers a metabolic dependency and therapeutic vulnerability sensitive to autophagy inhibition. Autophagy 14:283–295. https://doi.org/10.1080/15548627.2017.1409926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shi L, Li B, Zhang B, Zhen C, Zhou J, Tang S (2019) Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Res Ther 10:217. https://doi.org/10.1186/s13287-019-1340-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dolma S, Selvadurai HJ, Lan X, Lee L, Kushida M, Voisin V, Whetstone H, So M, Aviv T, Park N, Zhu X, Xu C, Head R, Rowland KJ, Bernstein M, Clarke ID, Bader G, Harrington L, Brumell JH, Tyers M, Dirks PB (2016) Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 29:859–873. https://doi.org/10.1016/j.ccell.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leng ZG, Lin SJ, Wu ZR, Guo YH, Cai L, Shang HB, Tang H, Xue YJ, Lou MQ, Zhao W, Le WD, Zhao WG, Zhang X, Wu ZB (2017) Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy 13:1404–1419. https://doi.org/10.1080/15548627.2017.1328347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin SJ, Leng ZG, Guo YH, Cai L, Cai Y, Li N, Shang HB, Le WD, Zhao WG, Wu ZB (2015) Suppression of mTOR pathway and induction of autophagy-dependent cell death by cabergoline. Oncotarget 6:39329–39341. https://doi.org/10.18632/oncotarget.5744

    Article  PubMed  PubMed Central  Google Scholar 

  34. Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G, Janji B (2011) The acquisition of resistance to TNFα in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy 7(7):760–70

    Article  CAS  PubMed  Google Scholar 

  35. Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793. https://doi.org/10.1093/bioinformatics/bti430

    Article  CAS  PubMed  Google Scholar 

  36. Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14. https://doi.org/10.1186/gb-2010-11-2-r14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fujishiro SH, Tanimura S, Mure S, Kashimoto Y, Watanabe K, Kohno M (2008) ERK1/2 phosphorylate GEF-H1 to enhance its guanine nucleotide exchange activity toward RhoA. Biochem Biophys Res Commun 368:162–167. https://doi.org/10.1016/j.bbrc.2008.01.066

    Article  CAS  PubMed  Google Scholar 

  38. Vomastek T, Iwanicki MP, Burack WR, Tiwari D, Kumar D, Parsons JT, Weber MJ, Nandicoori VK (2008) Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol Cell Biol 28:6954–6966. https://doi.org/10.1128/MCB.00925-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Morris EJ, Jha S, Restaino CR, Dayananth P, Zhu H, Cooper A, Carr D, Deng Y, Jin W, Black S, Long B, Liu J, Dinunzio E, Windsor W, Zhang R, Zhao S, Angagaw MH, Pinheiro EM, Desai J, Xiao L, Shipps G, Hruza A, Wang J, Kelly J, Paliwal S, Gao X, Babu BS, Zhu L, Daublain P, Zhang L, Lutterbach BA, Pelletier MR, Philippar U, Siliphaivanh P, Witter D, Kirschmeier P, Bishop WR, Hicklin D, Gilliland DG, Jayaraman L, Zawel L, Fawell S, Samatar AA (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3:742–750. https://doi.org/10.1158/2159-8290.CD-13-0070

    Article  CAS  PubMed  Google Scholar 

  40. Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J 277:2–21. https://doi.org/10.1111/j.1742-4658.2009.07366.x

    Article  CAS  PubMed  Google Scholar 

  41. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433. https://doi.org/10.1126/science.1204592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang K, Wei M, Yang Z, Fu Z, Xu R, Cheng C, Chen X, Chen S, Dammer E, Le W (2020) Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity. Cell Oncol 43:1175–1190. https://doi.org/10.1007/s13402-020-00550-4

    Article  CAS  Google Scholar 

  43. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Zughaier SM (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008) JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 30:678–688. https://doi.org/10.1016/j.molcel.2008.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fazekas D, Koltai M, Turei D, Modos D, Palfy M, Dul Z, Zsakai L, Szalay-Beko M, Lenti K, Farkas IJ, Vellai T, Csermely P, Korcsmaros T (2013) SignaLink 2—a signaling pathway resource with multi-layered regulatory networks. BMC Syst Biol 7:7. https://doi.org/10.1186/1752-0509-7-7

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yang W, Ju JH, Lee KM, Nam K, Oh S, Shin I (2013) Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression. Exp Cell Res 319:122–133. https://doi.org/10.1016/j.yexcr.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  47. Fu MM, Holzbaur EL (2014) MAPK8IP1/JIP1 regulates the trafficking of autophagosomes in neurons. Autophagy 10:2079–2081. https://doi.org/10.4161/auto.34451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bryant KL, Stalnecker CA, Zeitouni D, Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM, George SD, Tomar G, Papke B, Hobbs GA, Yan L, Hayes TK, Diehl JN, Goode GD, Chaika NV, Wang Y, Zhang GF, Witkiewicz AK, Knudsen ES, Petricoin EF 3rd, Singh PK, Macdonald JM, Tran NL, Lyssiotis CA, Ying H, Kimmelman AC, Cox AD, Der CJ (2020) Author correction: combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat Med 26:982. https://doi.org/10.1038/s41591-020-0947-8

    Article  CAS  PubMed  Google Scholar 

  49. Martina JA, Chen Y, Gucek M, Puertollano R (2012) MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8:903–914. https://doi.org/10.4161/auto.19653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108. https://doi.org/10.1038/emboj.2012.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jewell JL, Russell RC, Guan KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14:133–139. https://doi.org/10.1038/nrm3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fernandez AF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC, Marciano DK, Schiattarella GG, Bhagat G, Moe OW, Hu MC, Levine B (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558:136–140. https://doi.org/10.1038/s41586-018-0162-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu H, Li X, Feng M, Yao L, Deng Z, Zao G, Zhou Y, Chen S, Du Z (2018) Downregulation of RNF138 inhibits cellular proliferation, migration, invasion and EMT in glioma cells via suppression of the Erk signaling pathway. Oncol Rep 40:3285–3296. https://doi.org/10.3892/or.2018.6744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lan YL, Wang X, Lou JC, Xing JS, Zou S, Yu ZL, Ma XC, Wang H, Zhang B (2018) Marinobufagenin inhibits glioma growth through sodium pump alpha1 subunit and ERK signaling-mediated mitochondrial apoptotic pathway. Cancer Med 7:2034–2047. https://doi.org/10.1002/cam4.1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu M, Yu S, Xue Y, Yu H, Chen D, Wei X, Liu Y (2018) Over-expressed FEZF1 predicts a poor prognosis in glioma and promotes glioma cell malignant biological properties by regulating Akt-ERK pathway. J Mol Neurosci 65:411–419. https://doi.org/10.1007/s12031-018-1108-0

    Article  CAS  PubMed  Google Scholar 

  56. Wang J, Whiteman MW, Lian H, Wang G, Singh A, Huang D, Denmark T (2009) A non-canonical MEK/ERK signaling pathway regulates autophagy via regulating Beclin 1. J Biol Chem 284:21412–21424. https://doi.org/10.1074/jbc.M109.026013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yuan J, Dong X, Yap J, Hu J (2020) The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 13:113. https://doi.org/10.1186/s13045-020-00949-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu Z, Zhao G, Xie G, Zhao L, Chen Y, Yu H, Zhang Z, Li C, Li Y (2015) Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo. Oncotarget 6:32930–32943. https://doi.org/10.18632/oncotarget.5405

    Article  PubMed  PubMed Central  Google Scholar 

  59. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the Network. Cell 169:381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The study conception and design were performed by KY and JY. Material preparation, data collection and analysis were performed by KY, LL, XL and XS. The first draft of the manuscript was written by KY. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jian Yin.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethical approval

The study was approved by the Ethics Committee of the second hospital of Dalian Medical University (DMU) and followed the ethical guidelines of Declaration of Helsinki. Written informed consent was obtained from all patients whose tissues were used in this study. Mice were purchased from the Institute of Genome-Engineered Animal Models of DMU and were kept under specific pathogen-free conditions. The study was approved by the Animal Ethics Committee of DMU.

Consent to participate

Informed consents were obtained from all individual participants included in the study.

Consent for publication

The participants have consented to the submission and publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Luan, L., Li, X. et al. ERK inhibition in glioblastoma is associated with autophagy activation and tumorigenesis suppression. J Neurooncol 156, 123–137 (2022). https://doi.org/10.1007/s11060-021-03896-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-021-03896-3

Keywords

Navigation