Skip to main content

Advertisement

Log in

Boron neutron capture therapy for malignant brain tumors

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

Boron neutron capture therapy (BNCT) is tumor-selective particle radiation therapy that depends on the nuclear capture and fission reactions. These reactions occur when a non-radioactive boron isotope (10B) is irradiated with low-energy thermal neutrons to yield high linear energy transfer α-particles and lithium-7 nuclei within a limited path length, i.e., an almost one-cell diameter. The 10B-containing cells can then be selectively destroyed by these potent particles. BNCT has been applied in the field of malignant brain tumors for newly diagnosed and recurrent malignant gliomas (chiefly glioblastomas).

Clinical results

These clinical applications of BNCT have been performed with reactor-based neutron sources over the past decades. We also applied reactor-based BNCT for 58 newly diagnosed glioblastomas and 68 recurrent malignant gliomas including 52 glioblastomas. In this review article, we summarize the clinical results from the literature concerning BNCT for these high-grade gliomas (including our research). We also applied reactor-based BNCT for 46 cases of recurrent and refractory high-grade meningiomas, and some of the results will be presented herein.

Future prospects

In Japan, neutron sources have been shifted from reactors to accelerators. Phase 1 and 2 clinical trials have been performed for recurrent malignant gliomas using accelerator-based neutron sources, and now fortunately, a cyclotron-based neutron generator has been approved as a medical device by Japanese regulatory authority, as the world’s first accelerator-based BNCT system for medical use. We also discuss the future prospects of accelerator-based BNCT in hospitals as therapy for malignant brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coderre JA, Morris GM (1999) The radiation biology of boron neutron capture therapy. Radiat Res 151:1–18

    Article  CAS  Google Scholar 

  2. Chadwick J (1932) The existence of a neutron. Proc R Soc Lond 136:692–708

    CAS  Google Scholar 

  3. Locher G (1936) Biological effects and therapeutic possibilities of neutrons. Am J Roentgenol 36:1–13

    CAS  Google Scholar 

  4. Kruger PG (1940) Some biological effects of nuclear disintegration products on neoplastic tissue. Proc Natl Acad Sci USA 26:181–192. https://doi.org/10.1073/pnas.26.3.181

    Article  PubMed  CAS  Google Scholar 

  5. Zahl PA, Cooper FS, Dunning JR (1940) Some in vivo effects of localized nuclear disintegration products on a transplantable mouse sarcoma. Proc Natl Acad Sci USA 26:589–598. https://doi.org/10.1073/pnas.26.10.589

    Article  PubMed  CAS  Google Scholar 

  6. Barth RF (2003) A critical assessment of boron neutron capture therapy: an overview. J Neurooncol 62:1–5. https://doi.org/10.1007/BF02699929

    Article  PubMed  Google Scholar 

  7. Barth RF, Coderre JA, Vicente MG, Blue TE (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002. https://doi.org/10.1158/1078-0432.CCR-05-0035

    Article  PubMed  CAS  Google Scholar 

  8. Asbury AK, Ojemann RG, Nielsen SL, Sweet WH (1972) Neuropathologic study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation. J Neuropathol Exp Neurol 31:278–303. https://doi.org/10.1097/00005072-197204000-00005

    Article  PubMed  CAS  Google Scholar 

  9. Farr LE, Sweet WH, Locksley HB, Robertson JS (1954) Neutron capture therapy of gliomas using boron. Trans Am Neurol Assoc 13:110–113

    PubMed  CAS  Google Scholar 

  10. Goodwin JT, Farr LE, Sweet WH, Robertson JS (1955) Pathological study of eight patients with glioblastoma multiforme treated by neutron-capture therapy using boron 10. Cancer 8:601–615. https://doi.org/10.1002/1097-0142(1955)8:3<601:aid-cncr2820080326>3.0.co;2-r

    Article  PubMed  CAS  Google Scholar 

  11. Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG (1998) The chemistry of neutron capture therapy. Chem Rev 98:1515–1562. https://doi.org/10.1021/cr941195u

    Article  PubMed  CAS  Google Scholar 

  12. Ono K, Masunaga SI, Kinashi Y, Takagaki M, Akaboshi M, Kobayashi T, Akuta K (1996) Radiobiological evidence suggesting heterogeneous microdistribution of boron compounds in tumors: its relation to quiescent cell population and tumor cure in neutron capture therapy. Int J Radiat Oncol Biol Phys 34:1081–1086. https://doi.org/10.1016/0360-3016(95)02180-9

    Article  PubMed  CAS  Google Scholar 

  13. Detta A, Cruickshank GS (2009) L-amino acid transporter-1 and boronophenylalanine-based boron neutron capture therapy of human brain tumors. Cancer Res 69:2126–2132. https://doi.org/10.1158/0008-5472.CAN-08-2345

    Article  PubMed  CAS  Google Scholar 

  14. Miyatake S, Kawabata S, Hiramatsu R, Kuroiwa T, Suzuki M, Kondo N, Ono K (2016) Boron neutron capture therapy for malignant brain tumors. Neurol Med Chir (Tokyo) 56:361–371. https://doi.org/10.2176/nmc.ra.2015-0297

    Article  Google Scholar 

  15. Imahori Y, Ueda S, Ohmori Y, Kusuki T, Ono K, Fujii R, Ido T (1998) Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med 39:325–333

    PubMed  CAS  Google Scholar 

  16. Kawabata S, Miyatake S, Kajimoto Y, Kuroda Y, Kuroiwa T, Imahori Y, Kirihata M, Sakurai Y, Kobayashi T, Ono K (2003) The early successful treatment of glioblastoma patients with modified boron neutron capture therapy. Report of two cases. J Neurooncol 65:159–165. https://doi.org/10.1023/b:neon.0000003751.67562.8e

    Article  PubMed  Google Scholar 

  17. Miyatake S, Kawabata S, Kajimoto Y, Aoki A, Yokoyama K, Yamada M, Kuroiwa T, Tsuji M, Imahori Y, Kirihata M, Sakurai Y, Masunaga S, Nagata K, Maruhashi A, Ono K (2005) Modified boron neutron capture therapy for malignant gliomas performed using epithermal neutron and two boron compounds with different accumulation mechanisms: an efficacy study based on findings on neuroimages. J Neurosurg 103:1000–1009. https://doi.org/10.3171/jns.2005.103.6.1000

    Article  PubMed  Google Scholar 

  18. Barth RF, Vicente MG, Harling OK, Kiger WS 3rd, Riley KJ, Binns PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S (2012) Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol 7:146. https://doi.org/10.1186/1748-717X-7-146

    Article  PubMed  PubMed Central  Google Scholar 

  19. Suzuki M (2020) Boron neutron capture therapy (BNCT): a unique role in radiotherapy with a view to entering the accelerator-based BNCT era. Int J Clin Oncol 25:43–50. https://doi.org/10.1007/s10147-019-01480-4

    Article  PubMed  Google Scholar 

  20. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330

    Article  CAS  Google Scholar 

  21. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722. https://doi.org/10.1056/NEJMoa1308345

    Article  PubMed  CAS  Google Scholar 

  22. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708. https://doi.org/10.1056/NEJMoa1308573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kawabata S, Miyatake S, Hiramatsu R, Hirota Y, Miyata S, Takekita Y, Kuroiwa T, Kirihata M, Sakurai Y, Maruhashi A, Ono K (2011) Phase II clinical study of boron neutron capture therapy combined with X-ray radiotherapy/temozolomide in patients with newly diagnosed glioblastoma multiforme—study design and current status report. Appl Radiat Isot 69:1796–1799. https://doi.org/10.1016/j.apradiso.2011.03.014

    Article  PubMed  CAS  Google Scholar 

  24. Kawabata S, Miyatake S, Kuroiwa T, Yokoyama K, Doi A, Iida K, Miyata S, Nonoguchi N, Michiue H, Takahashi M, Inomata T, Imahori Y, Kirihata M, Sakurai Y, Maruhashi A, Kumada H, Ono K (2009) Boron neutron capture therapy for newly diagnosed glioblastoma (Tokyo). J Radiat Res 50:51–60. https://doi.org/10.1269/jrr.08043

    Article  PubMed  Google Scholar 

  25. Carson KA, Grossman SA, Fisher JD, Shaw EG (2007) Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS consortium phase I and II clinical trials. J Clin Oncol 25:2601–2606. https://doi.org/10.1200/JCO.2006.08.1661

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miyatake S, Kawabata S, Nonoguchi N, Yokoyama K, Kuroiwa T, Matsui H, Ono K (2009) Pseudoprogression in boron neutron capture therapy for malignant gliomas and meningiomas. Neuro Oncol 11:430–436. https://doi.org/10.1215/15228517-2008-107

    Article  PubMed  PubMed Central  Google Scholar 

  27. Miyatake S, Kawabata S, Yokoyama K, Kuroiwa T, Michiue H, Sakurai Y, Kumada H, Suzuki M, Maruhashi A, Kirihata M, Ono K (2009) Survival benefit of boron neutron capture therapy for recurrent malignant gliomas. J Neurooncol 91:199–206. https://doi.org/10.1007/s11060-008-9699-x

    Article  PubMed  Google Scholar 

  28. Furuse M, Kawabata S, Kuroiwa T, Miyatake S (2011) Repeated treatments with bevacizumab for recurrent radiation necrosis in patients with malignant brain tumors: a report of 2 cases. J Neurooncol 102:471–475. https://doi.org/10.1007/s11060-010-0333-3

    Article  PubMed  Google Scholar 

  29. Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Prabhu S, Loghin M, Gilbert MR, Jackson EF (2011) Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 79:1487–1495. https://doi.org/10.1016/j.ijrobp.2009.12.061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Furuse M, Nonoguchi N, Kuroiwa T, Miyamoto S, Arakawa Y, Shinoda J, Miwa K, Iuchi T, Tsuboi K, Houkin K, Terasaka S, Tabei Y, Nakamura H, Nagane M, Sugiyama K, Terasaki M, Abe T, Narita Y, Saito N, Mukasa A, Ogasawara K, Beppu T, Kumabe T, Nariai T, Tsuyuguchi N, Nakatani E, Kurisu S, Nakagawa Y, Miyatake S (2016) A prospective multicenter single-arm clinical trial of bevacizumab for patients with surgically untreatable symptomatic brain radiation necrosis. Neurooncol Pract 3:272–280. https://doi.org/10.1093/nop/npv064

    Article  PubMed  PubMed Central  Google Scholar 

  31. Miyatake S, Furuse M, Kawabata S, Maruyama T, Kumabe T, Kuroiwa T, Ono K (2013) Bevacizumab treatment of symptomatic pseudoprogression after boron neutron capture therapy for recurrent malignant gliomas. Report of 2 cases. Neuro Oncol 15:650–655. https://doi.org/10.1093/neuonc/not020

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miyatake S, Kawabata S, Hiramatsu R, Furuse M, Kuroiwa T, Suzuki M (2014) Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases. Radiat Oncol 9:6. https://doi.org/10.1186/1748-717X-9-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Shiba H, Takeuchi K, Hiramatsu R, Furuse M, Nonoguchi N, Kawabata S, Kuroiwa T, Kondo N, Sakurai Y, Suzuki M, Ono K, Oue S, Ishikawa E, Michiue H, Miyatake SI (2018) Boron neutron capture therapy combined with early successive bevacizumab treatments for recurrent malignant gliomas—a pilot study. Neurol Med Chir (Tokyo) 58:487–494. https://doi.org/10.2176/nmc.oa.2018-0111

    Article  Google Scholar 

  34. Jaaskelainen J, Haltia M, Servo A (1986) Atypical and anaplastic meningiomas: radiology, surgery, radiotherapy, and outcome. Surg Neurol 25:233–242. https://doi.org/10.1016/0090-3019(86)90233-8

    Article  PubMed  CAS  Google Scholar 

  35. Kaley TJ, Wen P, Schiff D, Ligon K, Haidar S, Karimi S, Lassman AB, Nolan CP, DeAngelis LM, Gavrilovic I, Norden A, Drappatz J, Lee EQ, Purow B, Plotkin SR, Batchelor T, Abrey LE, Omuro A (2015) Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro Oncol 17:116–121. https://doi.org/10.1093/neuonc/nou148

    Article  PubMed  CAS  Google Scholar 

  36. Chamberlain MC (2012) The role of chemotherapy and targeted therapy in the treatment of intracranial meningioma. Curr Opin Oncol 24:666–671. https://doi.org/10.1097/CCO.0b013e328356364d

    Article  PubMed  CAS  Google Scholar 

  37. Kawabata S, Hiramatsu R, Kuroiwa T, Ono K, Miyatake SI (2013) Boron neutron capture therapy for recurrent high-grade meningiomas. J Neurosurg 119:837–844. https://doi.org/10.3171/2013.5.JNS122204

    Article  PubMed  CAS  Google Scholar 

  38. Miyatake S, Tamura Y, Kawabata S, Iida K, Kuroiwa T, Ono K (2007) Boron neutron capture therapy for malignant tumors related to meningiomas. Neurosurgery 61:82–90. https://doi.org/10.1227/01.neu.0000279727.90650.24 (discussion 9081)

    Article  PubMed  Google Scholar 

  39. Tamura Y, Miyatake S, Nonoguchi N, Miyata S, Yokoyama K, Doi A, Kuroiwa T, Asada M, Tanabe H, Ono K (2006) Boron neutron capture therapy for recurrent malignant meningioma. Case report. J Neurosurg 105:898–903. https://doi.org/10.3171/jns.2006.105.6.898

    Article  PubMed  Google Scholar 

  40. Aihara T, Hiratsuka J, Morita N, Uno M, Sakurai Y, Maruhashi A, Ono K, Harada T (2006) First clinical case of boron neutron capture therapy for head and neck malignancies using 18F-BPA PET. Head Neck 28:850–855. https://doi.org/10.1002/hed.20418

    Article  PubMed  Google Scholar 

  41. Kankaanranta L, Saarilahti K, Makitie A, Valimaki P, Tenhunen M, Joensuu H (2011) Boron neutron capture therapy (BNCT) followed by intensity modulated chemoradiotherapy as primary treatment of large head and neck cancer with intracranial involvement. Radiother Oncol 99:98–99. https://doi.org/10.1016/j.radonc.2011.02.008

    Article  PubMed  Google Scholar 

  42. Kankaanranta L, Seppala T, Koivunoro H, Saarilahti K, Atula T, Collan J, Salli E, Kortesniemi M, Uusi-Simola J, Valimaki P, Makitie A, Seppanen M, Minn H, Revitzer H, Kouri M, Kotiluoto P, Seren T, Auterinen I, Savolainen S, Joensuu H (2012) Boron neutron capture therapy in the treatment of locally recurred head-and-neck cancer: final analysis of a phase I/II trial. Int J Radiat Oncol Biol Phys 82:e67–e75. https://doi.org/10.1016/j.ijrobp.2010.09.057

    Article  PubMed  Google Scholar 

  43. Kato I, Ono K, Sakurai Y, Ohmae M, Maruhashi A, Imahori Y, Kirihata M, Nakazawa M, Yura Y (2004) Effectiveness of BNCT for recurrent head and neck malignancies. Appl Radiat Isot 61:1069–1073. https://doi.org/10.1016/j.apradiso.2004.05.059

    Article  PubMed  CAS  Google Scholar 

  44. Koivunoro H, Kankaanranta L, Seppala T, Haapaniemi A, Makitie A, Joensuu H (2019) Boron neutron capture therapy for locally recurrent head and neck squamous cell carcinoma: an analysis of dose response and survival. Radiother Oncol 137:153–158. https://doi.org/10.1016/j.radonc.2019.04.033

    Article  PubMed  Google Scholar 

  45. Wang LW, Wang SJ, Chu PY, Ho CY, Jiang SH, Liu YW, Liu YH, Liu HM, Peir JJ, Chou FI, Yen SH, Lee YL, Chang CW, Liu CS, Chen YW, Ono K (2011) BNCT for locally recurrent head and neck cancer: preliminary clinical experience from a phase I/II trial at Tsing Hua open-pool reactor. Appl Radiat Isot 69:1803–1806. https://doi.org/10.1016/j.apradiso.2011.03.008

    Article  PubMed  CAS  Google Scholar 

  46. International Atomic Energy Agency (IAEA) (2001) IAEA-TECDOC-1223. Current status of neutron capture therapy. ISSN: 1011-4289. https://www-pub.iaea.org/MTCD/publications/PDF/te_1223_prn.pdf. Accessed 19 May 2020

  47. Forton E, Stichelbaut F, Cambriani A, Kleeven W, Ahlback J, Jongen Y (2009) Overview of the IBA accelerator-based BNCT system. Appl Radiat Isot 67:S262–S265. https://doi.org/10.1016/j.apradiso.2009.03.099

    Article  PubMed  CAS  Google Scholar 

  48. Kumada H, Matsumura A, Sakurai H, Sakae T, Yoshioka M, Kobayashi H, Matsumoto H, Kiyanagi Y, Shibata T, Nakashima H (2014) Project for the development of the linac based NCT facility in University of Tsukuba. Appl Radiat Isot 88:211–215. https://doi.org/10.1016/j.apradiso.2014.02.018

    Article  PubMed  CAS  Google Scholar 

  49. Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Kinashi Y, Kashino G, Liu Y, Mitsumoto T, Yajima S, Tsutsui H, Maruhashi A, Ono K (2009) Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy. Nucl Instrum Methods Phys Res B 267:1970–1977. https://doi.org/10.1016/j.nimb.2009.03.095

    Article  CAS  Google Scholar 

  50. Sumitomo Heavy Industries, Ltd. obtains medical device approval for manufacturing and sales of accelerator based BNCT system and the dose calculation program in Japan. World’s first BNCT system as medical device. https://www.shi.co.jp/english/info/2019/6kgpsq0000002ji0.html. Accessed 19 May 2020

  51. Stella Pharma Receives Marketing and Manufacturing Approval in Japan for Steboronine® Intravenous Drip Bag 9000 mg/300 mL. World’s First BNCT Drug. https://stella-pharma.co.jp/cp-bin/wordpress5/wp-content/uploads/2020/03/Press-release_Steboronine-approvalENG.pdf. Accessed 19 May 2020

  52. Altieri S, Balzi M, Bortolussi S, Bruschi P, Ciani L, Clerici AM, Faraoni P, Ferrari C, Gadan MA, Panza L, Pietrangeli D, Ricciardi G, Ristori S (2009) Carborane derivatives loaded into liposomes as efficient delivery systems for boron neutron capture therapy. J Med Chem 52:7829–7835. https://doi.org/10.1021/jm900763b

    Article  PubMed  CAS  Google Scholar 

  53. Li T, Hamdi J, Hawthorne MF (2006) Unilamellar liposomes with enhanced boron content. Bioconjug Chem 17:15–20. https://doi.org/10.1021/bc0501350

    Article  PubMed  CAS  Google Scholar 

  54. Crossley EL, Ziolkowski EJ, Coderre JA, Rendina LM (2007) Boronated DNA-binding compounds as potential agents for boron neutron capture therapy. Mini Rev Med Chem 7:303–313. https://doi.org/10.2174/138955707780059808

    Article  PubMed  CAS  Google Scholar 

  55. Hiramatsu R, Kawabata S, Tanaka H, Sakurai Y, Suzuki M, Ono K, Miyatake S, Kuroiwa T, Hao E, Vicente MG (2015) Tetrakis(p-carboranylthio-tetrafluorophenyl)chlorin (TPFC): application for photodynamic therapy and boron neutron capture therapy. J Pharm Sci 104:962–970. https://doi.org/10.1002/jps.24317

    Article  PubMed  CAS  Google Scholar 

  56. Renner MW, Miura M, Easson MW, Vicente MG (2006) Recent progress in the syntheses and biological evaluation of boronated porphyrins for boron neutron-capture therapy. Anticancer Agents Med Chem 6:145–157. https://doi.org/10.2174/187152006776119135

    Article  PubMed  CAS  Google Scholar 

  57. Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BT, Tjarks W, Barth RF, Claffey K, Backer JM (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429. https://doi.org/10.1158/1535-7163.MCT-05-0161

    Article  PubMed  CAS  Google Scholar 

  58. Yang W, Barth RF, Wu G, Kawabata S, Sferra TJ, Bandyopadhyaya AK, Tjarks W, Ferketich AK, Moeschberger ML, Binns PJ, Riley KJ, Coderre JA, Ciesielski MJ, Fenstermaker RA, Wikstrand CJ (2006) Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res 12:3792–3802. https://doi.org/10.1158/1078-0432.CCR-06-0141

    Article  PubMed  CAS  Google Scholar 

  59. Yang W, Barth RF, Wu G, Tjarks W, Binns P, Riley K (2009) Boron neutron capture therapy of EGFR or EGFRvIII positive gliomas using either boronated monoclonal antibodies or epidermal growth factor as molecular targeting agents. Appl Radiat Isot 67:S328–S331. https://doi.org/10.1016/j.apradiso.2009.03.030

    Article  PubMed  CAS  Google Scholar 

  60. Michiue H, Sakurai Y, Kondo N, Kitamatsu M, Bin F, Nakajima K, Hirota Y, Kawabata S, Nishiki T, Ohmori I, Tomizawa K, Miyatake S, Ono K, Matsui H (2014) The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials 35:3396–3405. https://doi.org/10.1016/j.biomaterials.2013.12.055

    Article  PubMed  CAS  Google Scholar 

  61. Nomoto T, Inoue Y, Yao Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N (2020) Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. Sci Adv 6:eaaz1722. https://doi.org/10.1126/sciadv.aaz1722

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chadha M, Capala J, Coderre JA, Elowitz EH, Iwai J, Joel DD, Liu HB, Wielopolski L, Chanana AD (1998) Boron neutron-capture therapy (BNCT) for glioblastoma multiforme (GBM) using the epithermal neutron beam at the Brookhaven National Laboratory. Int J Radiat Oncol Biol Phys 40:829–834. https://doi.org/10.1016/s0360-3016(97)00891-2

    Article  PubMed  CAS  Google Scholar 

  63. Chanana AD, Capala J, Chadha M, Coderre JA, Diaz AZ, Elowitz EH, Iwai J, Joel DD, Liu HB, Ma R, Pendzick N, Peress NS, Shady MS, Slatkin DN, Tyson GW, Wielopolski L (1999) Boron neutron capture therapy for glioblastoma multiforme: interim results from the phase I/II dose-escalation studies. Neurosurgery 44:1182–1192. https://doi.org/10.1097/00006123-199906000-00013 (discussion 11921183)

    Article  PubMed  CAS  Google Scholar 

  64. Coderre JA, Turcotte JC, Riley KJ, Binns PJ, Harling OK, Kiger WS 3rd (2003) Boron neutron capture therapy: cellular targeting of high linear energy transfer radiation. Technol Cancer Res Treat 2:355–375. https://doi.org/10.1177/153303460300200502

    Article  PubMed  CAS  Google Scholar 

  65. Diaz AZ (2003) Assessment of the results from the phase I/II boron neutron capture therapy trials at the Brookhaven National Laboratory from a clinician’s point of view. J Neurooncol 62:101–109. https://doi.org/10.1007/BF02699937

    Article  PubMed  Google Scholar 

  66. Busse PM, Harling OK, Palmer MR, Kiger WS 3rd, Kaplan J, Kaplan I, Chuang CF, Goorley JT, Riley KJ, Newton TH, Santa Cruz GA, Lu XQ, Zamenhof RG (2003) A critical examination of the results from the Harvard-MIT NCT program phase I clinical trial of neutron capture therapy for intracranial disease. J Neurooncol 62:111–121. https://doi.org/10.1007/BF02699938

    Article  PubMed  Google Scholar 

  67. Palmer MR, Goorley JT, Kiger WS, Busse PM, Riley KJ, Harling OK, Zamenhof RG (2002) Treatment planning and dosimetry for the Harvard-MIT phase I clinical trial of cranial neutron capture therapy. Int J Radiat Oncol Biol Phys 53:1361–1379. https://doi.org/10.1016/s0360-3016(02)02862-6

    Article  PubMed  Google Scholar 

  68. Kiger WS 3rd, Lu XQ, Harling OK, Riley KJ, Binns PJ, Kaplan J, Patel H, Zamenhof RG, Shibata Y, Kaplan ID, Busse PM, Palmer MR (2004) Preliminary treatment planning and dosimetry for a clinical trial of neutron capture therapy using a fission converter epithermal neutron beam. Appl Radiat Isot 61:1075–1081. https://doi.org/10.1016/j.apradiso.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  69. Vos MJ, Turowski B, Zanella FE, Paquis P, Siefert A, Hideghety K, Haselsberger K, Grochulla F, Postma TJ, Wittig A, Heimans JJ, Slotman BJ, Vandertop WP, Sauerwein W (2005) Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961. Int J Radiat Oncol Biol Phys 61:392–399. https://doi.org/10.1016/j.ijrobp.2004.06.008

    Article  PubMed  Google Scholar 

  70. Joensuu H, Kankaanranta L, Seppala T, Auterinen I, Kallio M, Kulvik M, Laakso J, Vahatalo J, Kortesniemi M, Kotiluoto P, Seren T, Karila J, Brander A, Jarviluoma E, Ryynanen P, Paetau A, Ruokonen I, Minn H, Tenhunen M, Jaaskelainen J, Farkkila M, Savolainen S (2003) Boron neutron capture therapy of brain tumors: clinical trials at the Finnish facility using boronophenylalanine. J Neurooncol 62:123–134. https://doi.org/10.1007/BF02699939

    Article  PubMed  Google Scholar 

  71. Kankaanranta L, Seppala T, Koivunoro H, Valimaki P, Beule A, Collan J, Kortesniemi M, Uusi-Simola J, Kotiluoto P, Auterinen I, Seren T, Paetau A, Saarilahti K, Savolainen S, Joensuu H (2011) L-boronophenylalanine-mediated boron neutron capture therapy for malignant glioma progressing after external beam radiation therapy: a phase I study. Int J Radiat Oncol Biol Phys 80:369–376. https://doi.org/10.1016/j.ijrobp.2010.02.031

    Article  PubMed  CAS  Google Scholar 

  72. Capala J, Barth RF, Bendayan M, Lauzon M, Adams DM, Soloway AH, Fenstermaker RA, Carlsson J (1996) Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjug Chem 7:7–15. https://doi.org/10.1021/bc950077q

    Article  PubMed  CAS  Google Scholar 

  73. Henriksson R, Capala J, Michanek A, Lindahl SK, Salford LG, Franzen L, Blomquist E, Westlin JE, Bergenheim AT (2008) Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA). Radiother Oncol 88:183–191. https://doi.org/10.1016/j.radonc.2006.04.015

    Article  PubMed  CAS  Google Scholar 

  74. Skold K, Stenstam BH, Diaz AZ, Giusti V, Pellettieri L, Hopewell JW (2010) Boron neutron capture therapy for glioblastoma multiforme: advantage of prolonged infusion of BPA-f. Acta Neurol Scand 122:58–62. https://doi.org/10.1111/j.1600-0404.2009.01267.x

    Article  PubMed  CAS  Google Scholar 

  75. Skold K, Gorlia T, Pellettieri L, Giusti V, Stenstam BH, Hopewell JW (2010) Boron neutron capture therapy for newly diagnosed glioblastoma multiforme: an assessment of clinical potential. Br J Radiol 83:596–603. https://doi.org/10.1259/bjr/56953620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Pellettieri L, Stenstam BH, Rezaei A, Giusti V, Skold K (2008) An investigation of boron neutron capture therapy for recurrent glioblastoma multiforme. Acta Neurol Scand 117:191–197. https://doi.org/10.1111/j.1600-0404.2007.00924.x

    Article  PubMed  CAS  Google Scholar 

  77. Yamamoto T, Matsumura A, Nakai K, Shibata Y, Endo K, Sakurai F, Kishi T, Kumada H, Yamamoto K, Torii Y (2004) Current clinical results of the Tsukuba BNCT trial. Appl Radiat Isot 61:1089–1093. https://doi.org/10.1016/j.apradiso.2004.05.010

    Article  PubMed  CAS  Google Scholar 

  78. Yamamoto T, Nakai K, Kageji T, Kumada H, Endo K, Matsuda M, Shibata Y, Matsumura A (2009) Boron neutron capture therapy for newly diagnosed glioblastoma. Radiother Oncol 91:80–84. https://doi.org/10.1016/j.radonc.2009.02.009

    Article  PubMed  Google Scholar 

  79. Kageji T, Mizobuchi Y, Nagahiro S, Nakagawa Y, Kumada H (2011) Long-survivors of glioblatoma treated with boron neutron capture therapy (BNCT). Appl Radiat Isot 69:1800–1802. https://doi.org/10.1016/j.apradiso.2011.03.021

    Article  PubMed  CAS  Google Scholar 

  80. Kageji T, Mizobuchi Y, Nagahiro S, Nakagawa Y, Kumada H (2011) Clinical results of boron neutron capture therapy (BNCT) for glioblastoma. Appl Radiat Isot 69:1823–1825. https://doi.org/10.1016/j.apradiso.2011.05.029

    Article  PubMed  CAS  Google Scholar 

  81. Kageji T, Nagahiro S, Matsuzaki K, Mizobuchi Y, Toi H, Nakagawa Y, Kumada H (2006) Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma—correlation between radiation dose and radiation injury and clinical outcome. Int J Radiat Oncol Biol Phys 65:1446–1455. https://doi.org/10.1016/j.ijrobp.2006.03.016

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors appreciate Dr. Shinji Kawabata for his activity to participate in clinical research and trial as sub investigator in Osaka Medical College. We express thanks for Prof. Hiroki Tanaka, Institute for integrated Radiation and Nuclear Science, Kyoto University and Prof. Kazuki Tsuchida, Research Laboratory of Accelerator-based BNCT System, Graduate School of Engineering, Nagoya University for fruitful discussion regarding accelerator for BNCT. Also we express thanks for Dr. Toshinori Mitsumoto, Sumitomo Heavy Industry, Ltd., for preparation of schematic diagram of accelerator in Fig. 

Fig. 5
figure 5

Left: A photograph of a cyclotron-based accelerator for neutron generation installed in the Kansai BNCT Medical Center in Osaka Medical College. Right: Cross-sectional diagram of the accelerator-based neutron source. By courtesy of Sumitomo Heavy Industries, Ltd., Shinagawa-ku, Tokyo

5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Ichi Miyatake.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyatake, SI., Wanibuchi, M., Hu, N. et al. Boron neutron capture therapy for malignant brain tumors. J Neurooncol 149, 1–11 (2020). https://doi.org/10.1007/s11060-020-03586-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-020-03586-6

Keywords

Navigation