Skip to main content
Log in

Identification and validation of a 21-mRNA prognostic signature in diffuse lower-grade gliomas

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Purpose

Diffuse low-grade and intermediate-grade gliomas, also known as lower-grade gliomas (LGGs), are a class of central nervous system tumors. Overall survival varies greatly between patients, highlighting the importance of evaluating exact outcomes to facilitate individualized clinical management. We aimed to identify an mRNA-based prognostic signature to predict the survival of patients with LGGs.

Methods

A total of 874 LGGs from two public datasets were included. Least absolute shrinkage and selection operator (LASSO) Cox regression was used to select the most prognostic mRNAs and build a risk score. A nomogram incorporating the risk score and clinical factors was established for individualized survival prediction. The performance of the nomogram was assessed in the training set (329 patients), internal validation set (140 patients), and external validation set (405 patients).

Results

21 most prognostic mRNAs remained following the LASSO Cox regression. The 21-mRNA signature successfully stratified patients into high- and low-risk groups (P < 0.001 for all datasets in Kaplan–Meier analysis). Subsequent gene set enrichment analysis identified 19 essential biological processes in high-risk LGGs. Furthermore, a nomogram incorporating the risk score, age, grade, and 1p/19q status was developed with favorable calibration and high predictive accuracy in the training set and validation sets (C-index: 0.877, 0.878, and 0.812, respectively).

Conclusion

The 21-mRNA signature has reliable prognostic value for LGGs and might facilitate the effective stratification and individualized management of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, Morozova O, Robertson AG, Noushmehr H, Laird PW, Cherniack AD, Akbani R, Huse JT, Ciriello G, Poisson LM, Barnholtz-Sloan JS, Berger MS, Brennan C, Colen RR, Colman H, Flanders AE, Giannini C, Grifford M, Iavarone A, Jain R, Joseph I, Kim J, Kasaian K, Mikkelsen T, Murray BA, O'Neill BP, Pachter L, Parsons DW, Sougnez C, Sulman EP, Vandenberg SR, Van Meir EG, von Deimling A, Zhang H, Crain D, Lau K, Mallery D, Morris S, Paulauskis J, Penny R, Shelton T, Sherman M, Yena P, Black A, Bowen J, Dicostanzo K, Gastier-Foster J, Leraas KM, Lichtenberg TM, Pierson CR, Ramirez NC, Taylor C, Weaver S, Wise L, Zmuda E, Davidsen T, Demchok JA, Eley G, Ferguson ML, Hutter CM, MillsShaw KR, Ozenberger BA, Sheth M, Sofia HJ, Tarnuzzer R, Wang Z, Yang L, Zenklusen JC, Ayala B, Baboud J, Chudamani S, Jensen MA, Liu J, Pihl T, Raman R, Wan Y, Wu Y, Ally A, Auman JT, Balasundaram M, Balu S, Baylin SB, Beroukhim R, Bootwalla MS, Bowlby R, Bristow CA, Brooks D, Butterfield Y, Carlsen R, Carter S, Chin L, Chu A, Chuah E, Cibulskis K, Clarke A, Coetzee SG, Dhalla N, Fennell T, Fisher S, Gabriel S, Getz G, Gibbs R, Guin R, Hadjipanayis A, Hayes DN, Hinoue T, Hoadley K, Holt RA, Hoyle AP, Jefferys SR, Jones S, Jones CD, Kucherlapati R, Lai PH, Lander E, Lee S, Lichtenstein L, Ma Y, Maglinte DT, Mahadeshwar HS, Marra MA, Mayo M, Meng S, Meyerson ML, Mieczkowski PA, Moore RA, Mose LE, Mungall AJ, Pantazi A, Parfenov M, Park PJ, Parker JS, Perou CM, Protopopov A, Ren X, Roach J, Sabedot TS, Schein J, Schumacher SE, Seidman JG, Seth S, Shen H, Simons JV, Sipahimalani P, Soloway MG, Song X, Sun H, Tabak B, Tam A, Tan D, Tang J, Thiessen N, Triche T Jr, Van Den Berg DJ, Veluvolu U, Waring S, Weisenberger DJ, Wilkerson MD, Wong T, Wu J, Xi L, Xu AW, Yang L, Zack TI, Zhang J, Aksoy BA, Arachchi H, Benz C, Bernard B, Carlin D, Cho J, DiCara D, Frazer S, Fuller GN, Gao J, Gehlenborg N, Haussler D, Heiman DI, Iype L, Jacobsen A, Ju Z, Katzman S, Kim H, Knijnenburg T, Kreisberg RB, Lawrence MS, Lee W, Leinonen K, Lin P, Ling S, Liu W, Liu Y, Liu Y, Lu Y, Mills G, Ng S, Noble MS, Paull E, Rao A, Reynolds S, Saksena G, Sanborn Z, Sander C, Schultz N, Senbabaoglu Y, Shen R, Shmulevich I, Sinha R, Stuart J, Sumer SO, Sun Y, Tasman N, Taylor BS, Voet D, Weinhold N, Weinstein JN, Yang D, Yoshihara K, Zheng S, Zhang W, Zou L, Abel T, Sadeghi S, Cohen ML, Eschbacher J, Hattab EM, Raghunathan A, Schniederjan MJ, Aziz D, Barnett G, Barrett W, Bigner DD, Boice L, Brewer C, Calatozzolo C, Campos B, Carlotti CG Jr, Chan TA, Cuppini L, Curley E, Cuzzubbo S, Devine K, DiMeco F, Duell R, Elder JB, Fehrenbach A, Finocchiaro G, Friedman W, Fulop J, Gardner J, Hermes B, Herold-Mende C, Jungk C, Kendler A, Lehman NL, Lipp E, Liu O, Mandt R, McGraw M, McLendon R, McPherson C, Neder L, Nguyen P, Noss A, Nunziata R, Ostrom QT, Palmer C, Perin A, Pollo B, Potapov A, Potapova O, Rathmell WK, Rotin D, Scarpace L, Schilero C, Senecal K, Shimmel K, Shurkhay V, Sifri S, Singh R, Sloan AE, Smolenski K, Staugaitis SM, Steele R, Thorne L, Tirapelli DP, Unterberg A, Vallurupalli M, Wang Y, Warnick R, Williams F, Wolinsky Y, Bell S, Rosenberg M, Stewart C, Huang F, Grimsby JL, Radenbaugh AJ, Zhang J (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498. https://doi.org/10.1056/NEJMoa1402121

    Article  CAS  Google Scholar 

  2. Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Rhun EL, Balana C, Chinot O, Bendszus M, Reijneveld JC, Dhermain F, French P, Marosi C, Watts C, Oberg I, Pilkington G, Baumert BG, Taphoorn MJB, Hegi M, Westphal M, Reifenberger G, Soffietti R, Wick W (2017) European association for neuro-oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 18:e315–e329. https://doi.org/10.1016/s1470-2045(17)30194-8

    Article  Google Scholar 

  3. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  4. Qian Z, Li Y, Fan X, Zhang C, Wang Y, Jiang T, Liu X (2018) Prognostic value of a microRNA signature as a novel biomarker in patients with lower-grade gliomas. J Neurooncol 137:127–137. https://doi.org/10.1007/s11060-017-2704-5

    Article  CAS  PubMed  Google Scholar 

  5. Xiao H, Bai J, Yan M, Ji K, Tian W, Liu D, Ning T, Liu X, Zou J (2019) Discovery of 5-signature predicting survival of patients with lower-grade glioma. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.02.147

    Article  PubMed  Google Scholar 

  6. Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A (2018) A prognostic signature for lower grade gliomas based on expression of long non-coding RNAs. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1416-y

    Article  PubMed  Google Scholar 

  7. Patil V, Mahalingam K (2018) A four-protein expression prognostic signature predicts clinical outcome of lower-grade glioma. Gene 679:57–64. https://doi.org/10.1016/j.gene.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  8. Tibshirani R (1996) Regression Shrinkage and selection via the Lasso. J R Stat Soc. 58:267–288

    Google Scholar 

  9. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395

    Article  CAS  Google Scholar 

  10. Hao HZ, Lu W (2007) Adaptive Lasso for Cox's proportional hazards model. Biometrika 94:691–703

    Article  Google Scholar 

  11. Pachter L (2011) Models for transcript quantification from RNA-Seq. arXiv preprint arXiv:11043889

  12. Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN (2010) RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26:493–500. https://doi.org/10.1093/bioinformatics/btp692

    Article  CAS  PubMed  Google Scholar 

  13. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285. https://doi.org/10.1007/s12064-012-0162-3

    Article  CAS  PubMed  Google Scholar 

  14. Wagner GP, Kin K, Lynch VJ (2013) A model based criterion for gene expression calls using RNA-seq data. Theory Biosci 132:159–164. https://doi.org/10.1007/s12064-013-0178-3

    Article  CAS  PubMed  Google Scholar 

  15. Liang W, Zhang L, Jiang G, Wang Q, Liu L, Liu D, Wang Z, Zhu Z, Deng Q, Xiong X, Shao W, Shi X, He J (2015) Development and validation of a nomogram for predicting survival in patients with resected non-small-cell lung cancer. J Clin Oncol 33:861–869. https://doi.org/10.1200/JCO.2014.56.6661

    Article  PubMed  Google Scholar 

  16. Durrleman S, Simon R (1989) Flexible regression models with cubic splines. Stat Med 8:551–561

    Article  CAS  Google Scholar 

  17. Rupp T, Langlois B, Koczorowska MM, Radwanska A, Sun Z, Hussenet T, Lefebvre O, Murdamoothoo D, Arnold C, Klein A, Biniossek ML, Hyenne V, Naudin E, Velazquez-Quesada I, Schilling O, Van Obberghen-Schilling E, Orend G (2016) Tenascin-C orchestrates glioblastoma angiogenesis by modulation of pro- and anti-angiogenic signaling. Cell Rep 17:2607–2619. https://doi.org/10.1016/j.celrep.2016.11.012

    Article  CAS  PubMed  Google Scholar 

  18. Miroshnikova YA, Mouw JK, Barnes JM, Pickup MW, Lakins JN, Kim Y, Lobo K, Persson AI, Reis GF, McKnight TR, Holland EC, Phillips JJ, Weaver VM (2016) Tissue mechanics promote IDH1-dependent HIF1alpha-tenascin C feedback to regulate glioblastoma aggression. Nat Cell Biol 18:1336–1345. https://doi.org/10.1038/ncb3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gocheva V, Naba A, Bhutkar A, Guardia T, Miller KM, Li CM, Dayton TL, Sanchez-Rivera FJ, Kim-Kiselak C, Jailkhani N, Winslow MM, Del Rosario A, Hynes RO, Jacks T (2017) Quantitative proteomics identify Tenascin-C as a promoter of lung cancer progression and contributor to a signature prognostic of patient survival. Proc Natl Acad Sci USA 114:E5625–E5634. https://doi.org/10.1073/pnas.1707054114

    Article  CAS  PubMed  Google Scholar 

  20. Ming X, Qiu S, Liu X, Li S, Wang Y, Zhu M, Li N, Luo P, Liang C, Tu J (2019) Prognostic role of tenascin-C for cancer outcome: a meta-analysis. Technol Cancer Res Treat 18:1533033818821106. https://doi.org/10.1177/1533033818821106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Persano L, Pistollato F, Rampazzo E, Della Puppa A, Abbadi S, Frasson C, Volpin F, Indraccolo S, Scienza R, Basso G (2012) BMP2 sensitizes glioblastoma stem-like cells to temozolomide by affecting HIF-1alpha stability and MGMT expression. Cell Death Dis 3:e412. https://doi.org/10.1038/cddis.2012.153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vishnubalaji R, Yue S, Alfayez M, Kassem M, Liu FF, Aldahmash A, Alajez NM (2016) Bone morphogenetic protein 2 (BMP2) induces growth suppression and enhances chemosensitivity of human colon cancer cells. Cancer Cell Int 16:77. https://doi.org/10.1186/s12935-016-0355-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma Y, Ma L, Guo Q, Zhang S (2010) Expression of bone morphogenetic protein-2 and its receptors in epithelial ovarian cancer and their influence on the prognosis of ovarian cancer patients. J Exp Clin Cancer Res 29:85. https://doi.org/10.1186/1756-9966-29-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horvath LG, Henshall SM, Kench JG, Turner JJ, Golovsky D, Brenner PC, O'Neill GF, Kooner R, Stricker PD, Grygiel JJ, Sutherland RL (2004) Loss of BMP2, Smad8, and Smad4 expression in prostate cancer progression. Prostate 59:234–242. https://doi.org/10.1002/pros.10361

    Article  CAS  PubMed  Google Scholar 

  25. Hu H, Xu L, Chen Y, Luo SJ, Wu YZ, Xu SH, Liu MT, Lin F, Mei Y, Yang Q, Qiang YY, Lin YW, Deng YJ, Lin T, Sha YQ, Huang BJ, Zhang SJ (2019) The upregulation of trophinin-associated protein (TROAP) predicts a poor prognosis in hepatocellular carcinoma. J Cancer 10:957–967. https://doi.org/10.7150/jca.26666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu S, Yuan H, Li Z, Zhang J, Wu J, Chen Y, Shi Q, Ren W, Shao N, Ying X (2017) Transcriptional response profiles of paired tumor-normal samples offer novel perspectives in pan-cancer analysis. Oncotarget 8:41334–41347. https://doi.org/10.18632/oncotarget.17295

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li K, Zhang R, Wei M, Zhao L, Wang Y, Feng X, Yang Y, Yang S, Zhang L (2019) TROAP promotes breast cancer proliferation and metastasis. Biomed Res Int 2019:6140951. https://doi.org/10.1155/2019/6140951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang J, Zhang Z, Wang Q, Xing XJ, Zhao Y (2016) Overexpression of microRNA-365 inhibits breast cancer cell growth and chemo-resistance through GALNT4. Eur Rev Med Pharmacol Sci 20:4710–4718

    CAS  PubMed  Google Scholar 

  29. Weng L, Ma J, Jia YP, Wu SQ, Liu BY, Cao Y, Yin X, Shang MY, Mao AW (2018) MiR-4262 promotes cell apoptosis and inhibits proliferation of colon cancer cells: involvement of GALNT4. Am J Transl Res 10:3969–3977

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mittal V (2018) Epithelial mesenchymal transition in tumor metastasis. Annu Rev Pathol 13:395–412. https://doi.org/10.1146/annurev-pathol-020117-043854

    Article  CAS  PubMed  Google Scholar 

  31. Rajesh Y, Biswas A, Mandal M (2017) Glioma progression through the prism of heat shock protein mediated extracellular matrix remodeling and epithelial to mesenchymal transition. Exp Cell Res 359:299–311. https://doi.org/10.1016/j.yexcr.2017.08.032

    Article  CAS  PubMed  Google Scholar 

  32. Kahlert UD, Nikkhah G, Maciaczyk J (2013) Epithelial-to-mesenchymal(-like) transition as a relevant molecular event in malignant gliomas. Cancer Lett 331:131–138. https://doi.org/10.1016/j.canlet.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  33. Malumbres M, Barbacid M (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166. https://doi.org/10.1038/nrc2602

    Article  CAS  PubMed  Google Scholar 

  34. Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33:261–274. https://doi.org/10.1046/j.1365-2184.2000.00191.x

    Article  CAS  PubMed  Google Scholar 

  35. Chen HZ, Tsai SY, Leone G (2009) Emerging roles of E2Fs in cancer: an exit from cell cycle control. Nat Rev Cancer 9:785–797. https://doi.org/10.1038/nrc2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Diakos CI, Charles KA, McMillan DC, Clarke SJ (2014) Cancer-related inflammation and treatment effectiveness. Lancet Oncol 15:e493–503. https://doi.org/10.1016/s1470-2045(14)70263-3

    Article  PubMed  Google Scholar 

  37. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848. https://doi.org/10.1038/nri1961

    Article  CAS  PubMed  Google Scholar 

  38. Balkwill F (2006) TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev 25:409–416. https://doi.org/10.1007/s10555-006-9005-3

    Article  CAS  PubMed  Google Scholar 

  39. Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N, Taketomi A (2017) Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci 108:1947–1952. https://doi.org/10.1111/cas.13332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rani A, Murphy JJ (2016) STAT5 in cancer and immunity. J Interferon Cytokine Res 36:226–237. https://doi.org/10.1089/jir.2015.0054

    Article  CAS  PubMed  Google Scholar 

  41. Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20:409–426. https://doi.org/10.1007/s10456-017-9562-9

    Article  CAS  PubMed  Google Scholar 

  42. Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumours. Nat Rev Neurosci 8:610–622. https://doi.org/10.1038/nrn2175

    Article  CAS  PubMed  Google Scholar 

  43. Gorlia T, Wu W, Wang M, Baumert BG, Mehta M, Buckner JC, Shaw E, Brown P, Stupp R, Galanis E, Lacombe D, van den Bent MJ (2013) New validated prognostic models and prognostic calculators in patients with low-grade gliomas diagnosed by central pathology review: a pooled analysis of EORTC/RTOG/NCCTG phase III clinical trials. Neuro Oncol 15:1568–1579. https://doi.org/10.1093/neuonc/not117

    Article  PubMed  PubMed Central  Google Scholar 

  44. Aghi MK, Nahed BV, Sloan AE, Ryken TC, Kalkanis SN, Olson JJ (2015) The role of surgery in the management of patients with diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neurooncol 125:503–530. https://doi.org/10.1007/s11060-015-1867-1

    Article  PubMed  Google Scholar 

  45. van den Bent MJ, Smits M, Kros JM, Chang SM (2017) Diffuse Infiltrating oligodendroglioma and astrocytoma. J Clin Oncol 35:2394–2401. https://doi.org/10.1200/jco.2017.72.6737

    Article  CAS  PubMed  Google Scholar 

  46. Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR (2019) Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol 15:405–417. https://doi.org/10.1038/s41582-019-0220-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 81472370 and 81672506), the Natural Science Foundation of Beijing (Grant No. 7192056), the National High Technology Research and Development Program of China (863 Program, Grant No. 2014AA020610) and the National Basic Research Program of China (973 Program, Grant No. 2014CB542006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Li, Zhen Wu or Jun-Ting Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, LR., Weng, JC., Huo, XL. et al. Identification and validation of a 21-mRNA prognostic signature in diffuse lower-grade gliomas. J Neurooncol 146, 207–217 (2020). https://doi.org/10.1007/s11060-019-03372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-019-03372-z

Keywords

Navigation