Association between tumor location and neurocognitive functioning using tumor localization maps

Abstract

Introduction

Patients with diffuse glioma often experience neurocognitive impairment already prior to surgery. Pertinent information on whether damage to a specific brain region due to tumor activity results in neurocognitive impairment or not, is relevant in clinical decision-making, and at the same time renders unique information on brain lesion location and functioning relationships. To examine the impact of tumor location on preoperative neurocognitive functioning (NCF), we performed MRI based lesion-symptom mapping.

Methods

Seventy-two patients (mean age 40 years) with a radiologically suspected glioma were recruited preoperatively. For each of the six cognitive domains tested, we used tumor localization maps and voxel-based lesion-symptom mapping analyses to identify cortical and subcortical regions associated with NCF impairment.

Results

Compared to healthy controls, preoperative NCF was significantly impaired in all cognitive domains. Most frequently affected were attention (30% of patients) and working memory (20% of patients). Deficits in attention were significantly associated with regions in the left frontal and parietal cortex, including the precentral and parietal-opercular cortex, and in left-sided subcortical fiber tracts, including the arcuate fasciculus and corticospinal tract. Surprisingly, no regions could be related to working memory capacity. For the other neurocognitive domains, impairments were mainly associated with regions in the left hemisphere.

Conclusions

Prior to treatment, patients with diffuse glioma in the left hemisphere run the highest risk to have NCF deficits. Identification of a left frontoparietal network involved in NCF not only may optimize surgical procedures but may also be integrated in counseling and cognitive rehabilitation for these patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Taphoorn MJ, Klein M (2004) Cognitive deficits in adult patients with brain tumours. Lancet Neurol 3(3):159–168

    Article  Google Scholar 

  2. 2.

    Teixidor P, Gatignol P, Leroy M, Masuet-Aumatell C, Capelle L, Duffau H (2007) Assessment of verbal working memory before and after surgery for low-grade glioma. J Neurooncol 81(3):305–313

    Article  Google Scholar 

  3. 3.

    Papagno C, Casarotti A, Comi A, Gallucci M, Riva M, Bello L (2012) Measuring clinical outcomes in neuro-oncology. A battery to evaluate low-grade gliomas (LGG). J Neurooncol 108(2):269–275

    Article  Google Scholar 

  4. 4.

    Satoer D, Vork J, Visch-Brink E, Smits M, Dirven C, Vincent A (2012) Cognitive functioning early after surgery of gliomas in eloquent areas. J Neurosurg 117(5):831–838

    Article  Google Scholar 

  5. 5.

    Duffau H, Moritz-Gasser S, Mandonnet E (2014) A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 131:1–10

    Article  Google Scholar 

  6. 6.

    Klein M, Taphoorn MJ, Heimans JJ, van der Ploeg HM, Vandertop WP, Smit EF et al (2001) Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients. J Clin Oncol 19(20):4037–4047

    CAS  Article  Google Scholar 

  7. 7.

    Bates E, Wilson SM, Saygin AP, Dick F, Sereno MI, Knight RT et al (2003) Voxel-based lesion-symptom mapping. Nat Neurosci 6(5):448–450

    CAS  Article  Google Scholar 

  8. 8.

    Biesbroek JM, Kuijf HJ, van der Graaf Y, Vincken KL, Postma A, Mali WP et al (2013) Association between subcortical vascular lesion location and cognition: a voxel-based and tract-based lesion-symptom mapping study. The SMART-MR study. PLoS ONE 8(4):e60541

    CAS  Article  Google Scholar 

  9. 9.

    Perlbarg V, Puybasset L, Tollard E, Lehericy S, Benali H, Galanaud D (2009) Relation between brain lesion location and clinical outcome in patients with severe traumatic brain injury: a diffusion tensor imaging study using voxel-based approaches. Hum Brain Mapp 30(12):3924–3933

    Article  Google Scholar 

  10. 10.

    Barbey AK, Colom R, Solomon J, Krueger F, Forbes C, Grafman J (2012) An integrative architecture for general intelligence and executive function revealed by lesion mapping. Brain 135(Pt 4):1154–1164

    Article  Google Scholar 

  11. 11.

    Campanella F, D'Agostini S, Skrap M, Shallice T (2010) Naming manipulable objects: anatomy of a category specific effect in left temporal tumours. Neuropsychologia 48(6):1583–1597

    Article  Google Scholar 

  12. 12.

    Mandonnet E, De Witt Hamer P, Poisson I, Whittle I, Bernat AL, Bresson D et al (2015) Initial experience using awake surgery for glioma: oncological, functional, and employment outcomes in a consecutive series of 25 cases. Neurosurgery 76(4):382–389. (Discussion 9)

    Article  Google Scholar 

  13. 13.

    Shallice T, Mussoni A, D'Agostino S, Skrap M (2010) Right posterior cortical functions in a tumour patient series. Cortex 46(9):1178–1188

    Article  Google Scholar 

  14. 14.

    Rorden C, Karnath HO, Bonilha L (2007) Improving lesion-symptom mapping. J Cogn Neurosci 19(7):1081–1088

    Article  Google Scholar 

  15. 15.

    Meyers CA, Cantor SB (2003) Neuropsychological assessment and treatment of patients with malignant brain tumors. In: Prigatano GP, Pliskin NH (eds) Clinical neuropsychology and cost outcome research, a beginning. Psychology Press, Inc, New York, pp 159–173

    Google Scholar 

  16. 16.

    Douw L, Klein M, Fagel SS, van den Heuvel J, Taphoorn MJ, Aaronson NK et al (2009) Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol 8(9):810–818

    Article  Google Scholar 

  17. 17.

    Jolles J, Van Boxtel MP, Ponds RW, Metsemakers JF, Houx PJ (1998) The Maastricht aging study (MAAS). The longitudinal perspective of cognitive aging. Tijdschr Gerontol Geriatr 29(3):120–129

    CAS  PubMed  Google Scholar 

  18. 18.

    De Bie SE (1987) Proposal for uniformisation of questions regarding background variables and interviews. Leiden University Press, Leiden

    Google Scholar 

  19. 19.

    Lezak MD, Howieson DB, Loring DW (2004) Neuropsychological Assessment. Oxford Univerity Press, New York

    Google Scholar 

  20. 20.

    De Witt Hamer PC, Hendriks EJ, Mandonnet E, Barkhof F, Zwinderman AH, Duffau H (2013) Resection probability maps for quality assessment of glioma surgery without brain location bias. PLoS ONE 8(9):e73353

    Article  Google Scholar 

  21. 21.

    Fonov V, McKinstry R, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102

    Article  Google Scholar 

  22. 22.

    Avants BB, Epstein CL, Grossman M, Gee JC (2008) Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12(1):26–41

    CAS  Article  Google Scholar 

  23. 23.

    Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  Google Scholar 

  24. 24.

    Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res 12(5):419–446

    Article  Google Scholar 

  25. 25.

    Schwartzman A, Dougherty RF, Lee J, Ghahremani D, Taylor JE (2009) Empirical null and false discovery rate analysis in neuroimaging. Neuroimage 44(1):71–82

    Article  Google Scholar 

  26. 26.

    Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980

    Article  Google Scholar 

  27. 27.

    Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44(8):1105–1132

    Article  Google Scholar 

  28. 28.

    Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  29. 29.

    Gleichgerrcht E, Fridriksson J, Bonilha L (2015) Neuroanatomical foundations of naming impairments across different neurologic conditions. Neurology 85(3):284–292

    Article  Google Scholar 

  30. 30.

    Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135(Pt 12):3529–3550

    Article  Google Scholar 

  31. 31.

    Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    CAS  Article  Google Scholar 

  32. 32.

    Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    CAS  Article  Google Scholar 

  33. 33.

    Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    CAS  Article  Google Scholar 

  34. 34.

    Posner MI, Sheese BE, Odludas Y, Tang Y (2006) Analyzing and shaping human attentional networks. Neural Netw 19(9):1422–1429

    Article  Google Scholar 

  35. 35.

    Rinne P, Hassan M, Goniotakis D, Chohan K, Sharma P, Langdon D et al (2013) Triple dissociation of attention networks in stroke according to lesion location. Neurology 81(9):812–820

    Article  Google Scholar 

  36. 36.

    Raz A (2004) Anatomy of attentional networks. Anat Rec B New Anat 281(1):21–36

    Article  Google Scholar 

  37. 37.

    Corbetta M, Ramsey L, Callejas A, Baldassarre A, Hacker CD, Siegel JS et al (2015) Common behavioral clusters and subcortical anatomy in stroke. Neuron 85(5):927–941

    CAS  Article  Google Scholar 

  38. 38.

    Merkley TL, Larson MJ, Bigler ED, Good DA, Perlstein WM (2013) Structural and functional changes of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills. J Int Neuropsychol Soc 19(8):899–910

    Article  Google Scholar 

  39. 39.

    Murakami T, Hama S, Yamashita H, Onoda K, Hibino S, Sato H et al (2014) Neuroanatomic pathway associated with attentional deficits after stroke. Brain Res 1544:25–32

    CAS  Article  Google Scholar 

  40. 40.

    Chiang HL, Chen YJ, Shang CY, Tseng WY, Gau SS (2016) Different neural substrates for executive functions in youths with ADHD: a diffusion spectrum imaging tractography study. Psychol Med 46(6):1225–1238

    Article  Google Scholar 

  41. 41.

    Ivanova MV, Dragoy O, Kuptsova SV, Yu Akinina S, Petrushevskii AG, Fedina ON et al (2018) Neural mechanisms of two different verbal working memory tasks: A VLSM study. Neuropsychologia 115:25–41

    CAS  Article  Google Scholar 

  42. 42.

    Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25(1):46–59

    Article  Google Scholar 

  43. 43.

    Palacios EM, Sala-Llonch R, Junque C, Roig T, Tormos JM, Bargallo N et al (2012) White matter integrity related to functional working memory networks in traumatic brain injury. Neurology 78(12):852–860

    CAS  Article  Google Scholar 

  44. 44.

    Noll KR, Sullaway C, Ziu M, Weinberg JS, Wefel JS (2015) Relationships between tumor grade and neurocognitive functioning in patients with glioma of the left temporal lobe prior to surgical resection. Neuro Oncol 17(4):580–587

    Article  Google Scholar 

  45. 45.

    Karnath HO, Steinbach JP (2011) Do brain tumours allow valid conclusions on the localisation of human brain functions?—Objections. Cortex 47(8):1004–1006

    Article  Google Scholar 

  46. 46.

    Duffau H (2011) Do brain tumours allow valid conclusions on the localisation of human brain functions? Cortex 47(8):1016–1017

    Article  Google Scholar 

  47. 47.

    Kesler SR, Noll K, Cahill DP, Rao G, Wefel JS (2017) The effect of IDH1 mutation on the structural connectome in malignant astrocytoma. J Neurooncol 131(3):565–574

    CAS  Article  Google Scholar 

  48. 48.

    Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Lopes M et al (2003) Functional recovery after surgical resection of low grade gliomas in eloquent brain: hypothesis of brain compensation. J Neurol Neurosurg Psychiatry 74(7):901–907

    CAS  Article  Google Scholar 

  49. 49.

    Charras P, Herbet G, Deverdun J, de Champfleur NM, Duffau H, Bartolomeo P et al (2015) Functional reorganization of the attentional networks in low-grade glioma patients: a longitudinal study. Cortex 63:27–41

    Article  Google Scholar 

  50. 50.

    Visser M, Müller DMJ, van Duijn RJM, Smits M, Verburg N, Hendriks EJ et al (2019) Inter-rater agreement in glioma segmentations on longitudinal MRI. Neuroimage Clin 22:101727

    CAS  Article  Google Scholar 

  51. 51.

    Klein M, Engelberts NH, van der Ploeg HM, Kasteleijn-Nolst Trenite DG, Aaronson NK, Taphoorn MJ et al (2003) Epilepsy in low-grade gliomas: the impact on cognitive function and quality of life. Ann Neurol 54(4):514–520

    Article  Google Scholar 

  52. 52.

    Campanella F, Shallice T, Ius T, Fabbro F, Skrap M (2014) Impact of brain tumour location on emotion and personality: a voxel-based lesion-symptom mapping study on mentalization processes. Brain 137(Pt 9):2532–2545

    Article  Google Scholar 

  53. 53.

    van Coevorden-van Loon EMP, Coomans MB, Heijenbrok-Kal MH, Ribbers GM, van den Bent MJ (2017) Fatigue in patients with low grade glioma: systematic evaluation of assessment and prevalence. J Neurooncol 133(2):237–246

    Article  Google Scholar 

  54. 54.

    Talacchi A, Santini B, Savazzi S, Gerosa M (2011) Cognitive effects of tumour and surgical treatment in glioma patients. J Neurooncol 103(3):541–549

    Article  Google Scholar 

Download references

Funding

This study is part of the program Innovative Medical Devices Initiative with project number 10–10400-96–14003, which is financed by the Netherlands Organization for Scientific Research (NWO). This research is also supported by a research grant from the Dutch Cancer Society (Grant No. VU2014-7113).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Esther J. J. Habets.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 2—Video 1 Axial sections of tumor-infiltrated brain regions associated with language dysfunction. The results identify established language regions. Results are superimposed on MNI standard brain template: (1) tumor map of 46 patients without language dysfunction, (2) tumor map of 13 patients with language dysfunction, (3) relative risk map of tumor location with and without language dysfunction, (4) p-value map of randomization tests, (5) q-value map of false discovery rate. The numbers indicate MNI z-values. (M4V 1978 kb)

Online Resource 3—Video 2 Axial sections of tumor regions associated with attention impairment. Results are superimposed on MNI standard brain template: (1) lesion map of regions of 49 patients without impairment, (2) lesion map of 22 patients with attention impairment, (3) relative risk map of regions with and without attention impairment, (4) p-value map of randomization tests, (5) q-value map of false discovery rate. The numbers indicate MNI z-values. (M4V 2048 kb)

Online Resource 4—Video 3 Axial sections of tumor regions associated with working memory impairment. Results are superimposed on MNI standard brain template: (1) lesion map of regions of 57 patients without impairment, (2) lesion map of 14 patients with working memory impairment, (3) relative risk map of regions with and without working memory impairment, (4) p-value map of randomization tests, (5) q-value map of false discovery rate. The numbers indicate MNI z-values. (M4V 1983 kb)

Online Resource 5—Video 4 Axial sections of tumor regions associated with visual memory impairment. Results are superimposed on MNI standard brain template: (1) lesion map of regions of 60 patients without impairment, (2) lesion map of 10 patients with visual memory impairment, (3) relative risk map of regions with and without visual memory impairment, (4) p-value map of randomization tests, (5) q-value map of false discovery rate. The numbers indicate MNI z-values. (M4V 1962 kb)

Online Resource 6—Video 5 Axial sections of tumor regions associated with verbal memory impairment. Results are superimposed on MNI standard brain template: (1) lesion map of regions of 62 patients without impairment, (2) lesion map of 9 patients with verbal memory impairment, (3) relative risk map of regions with and without verbal memory impairment, (4) p-value map of randomization tests, (5) q-value map of false discovery rate. The numbers indicate MNI z-values. (M4V 2087 kb)

Online Resource 7—Video 6 Axial sections of tumor regions associated with information processing speed impairment. Results are superimposed on MNI standard brain template: (1) lesion map of regions of 63 patients without impairment, (2) lesion map of 8 patients with information processing speed impairment, (3) relative risk map of regions with and without information processing speed impairment, (4) p-value map of randomization tests, (5) q-value map of false discovery rate. The numbers indicate MNI z-values. (M4V 2034 kb)

Online Resource 8—Video 7 Axial sections of tumor regions associated with impairment in executive functioning. Results are superimposed on MNI standard brain template: (1) lesion map of regions of 65 patients without impairment, (2) lesion map of 6 patients with executive functioning impairment, (3) relative risk map of regions with and impairment in executive functioning, (4) p-value map of randomization tests, (5) q-value map of false discovery rate. The numbers indicate MNI z-values. (M4V 1979 kb)

Online Resource 1 (DOCX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habets, E.J.J., Hendriks, E.J., Taphoorn, M.J.B. et al. Association between tumor location and neurocognitive functioning using tumor localization maps. J Neurooncol 144, 573–582 (2019). https://doi.org/10.1007/s11060-019-03259-z

Download citation

Keywords

  • Glioma
  • Neurocognitive functioning
  • MRI
  • Functional mapping