Skip to main content

Advertisement

Log in

EpCAM-based assays for epithelial tumor cell detection in cerebrospinal fluid

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The diagnosis of leptomeningeal metastases (LM) of solid tumors is complicated due to low sensitivities of both magnetic resonance imaging (MRI) and cytology. MRI has a sensitivity of 76% for the diagnosis of LM and cerebrospinal fluid (CSF) cytology has a sensitivity of 44–67% at first lumbar puncture which increases to 84–91% upon second CSF sampling. Epithelial cell adhesion molecule (EpCAM) is expressed by solid tumors of epithelial origin like non-small-cell lung cancer, breast cancer or ovarium cancer. Recently, a CELLSEARCH® assay and flow cytometry laboratory techniques have been developed to detect circulating tumor cells (CTCs) of epithelial origin in CSF. These laboratory techniques are based on capture antibodies labelled with different fluorescent tags against EpCAM. In this review, we provide an overview of the available laboratory techniques and diagnostic accuracy for tumor cell detection in CSF. The reported sensitivities of the EpCAM-based CTC assays for the diagnosis of LM across the different studies are highly promising and vary between 76 and 100%. An overview of the different EpCAM-based techniques for the enumeration of CTCs in the CSF is given and a comparison is made with CSF cytology for the diagnoses of LM from epithelial tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Straathof CS, de Bruin HG, Dippel DW, Vecht CJ (1999) The diagnostic accuracy of magnetic resonance imaging and cerebrospinal fluid cytology in leptomeningeal metastasis. J Neurol 246(9):810–814

    Article  CAS  PubMed  Google Scholar 

  2. Wasserstrom WR, Glass JP, Posner JB (1982) Diagnosis and treatment of leptomeningeal metastases from solid tumors: experience with 90 patients. Cancer 49(4):759–772

    Article  CAS  PubMed  Google Scholar 

  3. van Oostenbrugge RJ, Twijnstra A (1999) Presenting features and value of diagnostic procedures in leptomeningeal metastases. Neurology 53(2):382–385

    Article  PubMed  Google Scholar 

  4. Tu Q, Wu X, Le Rhun E, Blonski M, Wittwer B, Taillandier L, De Carvalho Bittencourt M, Faure GC (2015) CellSearch technology applied to the detection and quantification of tumor cells in CSF of patients with lung cancer leptomeningeal metastasis. Lung Cancer 90(2):352–357. https://doi.org/10.1016/j.lungcan.2015.09.008

    Article  PubMed  Google Scholar 

  5. Lee JS, Melisko ME, Magbanua MJ, Kablanian AT, Scott JH, Rugo HS, Park JW (2015) Detection of cerebrospinal fluid tumor cells and its clinical relevance in leptomeningeal metastasis of breast cancer. Breast Cancer Res Treat 154(2):339–349. https://doi.org/10.1007/s10549-015-3610-1

    Article  PubMed  Google Scholar 

  6. Nayak L, Fleisher M, Gonzalez-Espinoza R, Lin O, Panageas K, Reiner A, Liu CM, Deangelis LM, Omuro A (2013) Rare cell capture technology for the diagnosis of leptomeningeal metastasis in solid tumors. Neurology 80(17):1598–1605. https://doi.org/10.1212/WNL.0b013e31828f183f

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jiang BY, Li YS, Guo WB, Zhang XC, Chen Z, Su J, Zhong W, Yang XN, Yang J, Shao YW, Huang B, Liu YH, Zhou Q, Tu HY, Chen HJ, Wang Z, Xu C, Wang BC, Wu SY, Gao CY, Zhang X, Wu YL (2017) Detection of driver and resistance mutations in leptomeningeal metastases of NSCLC by next-generation sequencing of cerebrospinal fluid circulating tumor cells. Clin Cancer Res. https://doi.org/10.1158/1078-0432.ccr-17-0047

    Google Scholar 

  8. Milojkovic Kerklaan B, Pluim D, Bol M, Hofland I, Westerga J, van Tinteren H, Beijnen JH, Boogerd W, Schellens JH, Brandsma D (2016) EpCAM-based flow cytometry in cerebrospinal fluid greatly improves diagnostic accuracy of leptomeningeal metastases from epithelial tumors. Neuro Oncol 18(6):855–862. https://doi.org/10.1093/neuonc/nov273

    Article  PubMed  Google Scholar 

  9. Subira D, Serrano C, Castanon S, Gonzalo R, Illan J, Pardo J, Martinez-Garcia M, Millastre E, Aparisi F, Navarro M, Domine M, Gil-Bazo I, Perez Segura P, Gil M, Bruna J (2012) Role of flow cytometry immunophenotyping in the diagnosis of leptomeningeal carcinomatosis. Neuro Oncol 14(1):43–52. https://doi.org/10.1093/neuonc/nor172

    Article  PubMed  Google Scholar 

  10. Subira D, Simo M, Illan J, Serrano C, Castanon S, Gonzalo R, Granizo JJ, Martinez-Garcia M, Navarro M, Pardo J, Bruna J (2015) Diagnostic and prognostic significance of flow cytometry immunophenotyping in patients with leptomeningeal carcinomatosis. Clin Exp Metastasis 32(4):383–391. https://doi.org/10.1007/s10585-015-9716-3

    Article  CAS  PubMed  Google Scholar 

  11. Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M, Gires O (2009) Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11(2):162–171. https://doi.org/10.1038/ncb1824

    Article  CAS  PubMed  Google Scholar 

  12. Litvinov SV, Velders MP, Bakker HA, Fleuren GJ, Warnaar SO (1994) Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 125(2):437–446

    Article  CAS  PubMed  Google Scholar 

  13. Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, Dirnhofer S (2004) Frequent EpCam protein expression in human carcinomas. Hum Pathol 35(1):122–128

    Article  CAS  PubMed  Google Scholar 

  14. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW, Terstappen LW (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10(20):6897–6904. https://doi.org/10.1158/1078-0432.CCR-04-0378

    Article  PubMed  Google Scholar 

  15. Zhou Y, Bian B, Yuan X, Xie G, Ma Y, Shen L (2015) Prognostic value of circulating tumor cells in ovarian cancer: a meta-analysis. PLoS ONE 10(6):e0130873. https://doi.org/10.1371/journal.pone.0130873

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lv Q, Gong L, Zhang T, Ye J, Chai L, Ni C, Mao Y (2016) Prognostic value of circulating tumor cells in metastatic breast cancer: a systemic review and meta-analysis. Clin Transl Oncol 18(3):322–330. https://doi.org/10.1007/s12094-015-1372-1

    Article  CAS  PubMed  Google Scholar 

  17. Huang X, Gao P, Song Y, Sun J, Chen X, Zhao J, Xu H, Wang Z (2015) Meta-analysis of the prognostic value of circulating tumor cells detected with the CellSearch system in colorectal cancer. BMC Cancer 15:202. https://doi.org/10.1186/s12885-015-1218-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ma X, Xiao Z, Li X, Wang F, Zhang J, Zhou R, Wang J, Liu L (2014) Prognostic role of circulating tumor cells and disseminated tumor cells in patients with prostate cancer: a systematic review and meta-analysis. Tumour Biol 35(6):5551–5560. https://doi.org/10.1007/s13277-014-1731-5

    Article  CAS  PubMed  Google Scholar 

  19. Le Rhun E, Massin F, Tu Q, Bonneterre J, Bittencourt Mde C, Faure GC (2012) Development of a new method for identification and quantification in cerebrospinal fluid of malignant cells from breast carcinoma leptomeningeal metastasis. BMC Clin Pathol 12:21. https://doi.org/10.1186/1472-6890-12-21

    Article  PubMed  PubMed Central  Google Scholar 

  20. Patel AS, Allen JE, Dicker DT, Peters KL, Sheehan JM, Glantz MJ, El-Deiry WS (2011) Identification and enumeration of circulating tumor cells in the cerebrospinal fluid of breast cancer patients with central nervous system metastases. Oncotarget 2(10):752–760. https://doi.org/10.18632/oncotarget.336

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andree KC, van Dalum G, Terstappen LW (2016) Challenges in circulating tumor cell detection by the CellSearch system. Mol Oncol 10(3):395–407. https://doi.org/10.1016/j.molonc.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  22. CellSearch™ (2017) Circulating Tumor Cell Kit premarket notification—expanded indications for use-colorectal. Available at https://www.accessdata.fda.gov/cdrh_docs/pdf7/k071729.pdf Accessed 21 Mar 2017

  23. de Wit S, van Dalum G, Terstappen LW (2014) Detection of circulating tumor cells. Scientifica 2014:819362. https://doi.org/10.1155/2014/819362

    PubMed  PubMed Central  Google Scholar 

  24. Cellsearch® (2017) Circulating Tumor Cell Kit (Epithelial). Available at http://documents.cellsearchctc.com/pdf/e631600004/e631600004_EN.pdf Accessed 22 Mar 2017

  25. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 13(3):920–928. https://doi.org/10.1158/1078-0432.CCR-06-1695

    Article  CAS  PubMed  Google Scholar 

  26. Acosta M, Pereira J, Arroz M (2016) Screening of carcinoma metastasis by flow cytometry: a study of 238 cases. Cytometry B Clin Cytom 90(3):289–294. https://doi.org/10.1002/cyto.b.21258

    Article  CAS  PubMed  Google Scholar 

  27. Glantz MJ, Cole BF, Glantz LK, Cobb J, Mills P, Lekos A, Walters BC, Recht LD (1998) Cerebrospinal fluid cytology in patients with cancer: minimizing false-negative results. Cancer 82(4):733–739

    Article  CAS  PubMed  Google Scholar 

  28. Hyun KA, Koo GB, Han H, Sohn J, Choi W, Kim SI, Jung HI, Kim YS (2016) Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer. Oncotarget 7(17):24677–24687. https://doi.org/10.18632/oncotarget.8250

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14 Pt 1):4218–4224. https://doi.org/10.1158/1078-0432.CCR-05-2821

    Article  CAS  PubMed  Google Scholar 

  30. Kraan J, Sleijfer S, Strijbos MH, Ignatiadis M, Peeters D, Pierga JY, Farace F, Riethdorf S, Fehm T, Zorzino L, Tibbe AG, Maestro M, Gisbert-Criado R, Denton G, de Bono JS, Dive C, Foekens JA, Gratama JW (2011) External quality assurance of circulating tumor cell enumeration using the CellSearch® system: a feasibility study. Cytometry B Clin Cytom 80(2):112–118. https://doi.org/10.1002/cyto.b.20573

    Article  PubMed  Google Scholar 

  31. Chamberlain M, Soffietti R, Raizer J, Ruda R, Brandsma D, Boogerd W, Taillibert S, Groves MD, Le Rhun E, Junck L, van den Bent M, Wen PY, Jaeckle KA (2014) Leptomeningeal metastasis: a response assessment in neuro-oncology critical review of endpoints and response criteria of published randomized clinical trials. Neuro Oncol 16(9):1176–1185. https://doi.org/10.1093/neuonc/nou089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jackman DM, Cioffredi LA, Jacobs L, Sharmeen F, Morse LK, Lucca J, Plotkin SR, Marcoux PJ, Rabin MS, Lynch TJ, Johnson BE, Kesari S (2015) A phase I trial of high dose gefitinib for patients with leptomeningeal metastases from non-small cell lung cancer. Oncotarget 6(6):4527–4536. https://doi.org/10.18632/oncotarget.2886

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu PF, Lin CH, Kuo CH, Chen WW, Yeh DC, Liao HW, Huang SM, Cheng AL, Lu YS (2015) A pilot study of bevacizumab combined with etoposide and cisplatin in breast cancer patients with leptomeningeal carcinomatosis. BMC Cancer 15:299. https://doi.org/10.1186/s12885-015-1290-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brower JV, Saha S, Rosenberg SA, Hullett CR, Ian Robins H (2016) Management of leptomeningeal metastases: prognostic factors and associated outcomes. J Clin Neurosci 27:130–137. https://doi.org/10.1016/j.jocn.2015.11.012

    Article  PubMed  Google Scholar 

  35. Cordone I, Masi S, Summa V, Carosi M, Vidiri A, Fabi A, Pasquale A, Conti L, Rosito I, Carapella CM, Villani V, Pace A (2017) Overexpression of syndecan-1, MUC-1, and putative stem cell markers in breast cancer leptomeningeal metastasis: a cerebrospinal fluid flow cytometry study. Breast Cancer Res 19(1):46. https://doi.org/10.1186/s13058-017-0827-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tibbe AG, de Grooth BG, Greve J, Dolan GJ, Terstappen LW (2002) Imaging technique implemented in CellTracks system. Cytometry 47(4):248–255

    Article  PubMed  Google Scholar 

  37. Tu Q, Wu X, Le Rhun E, Blonski M, Wittwer B, Taillandier L, De Carvalho Bittencourt M, Faure GC.(2015) CellSearch technology applied to the detection and quantification of tumor cells in CSF of patients with lung cancer leptomeningeal metastasis, Pages No. 352–357 Reprinted from Lung Cancer: vol 90 number 2 Copyright 2015, with permission from Elsevier

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieta Brandsma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Bussel, M.T.J., Pluim, D., Bol, M. et al. EpCAM-based assays for epithelial tumor cell detection in cerebrospinal fluid. J Neurooncol 137, 1–10 (2018). https://doi.org/10.1007/s11060-017-2691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-017-2691-6

Keywords

Navigation