Skip to main content

Advertisement

Log in

Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

In the effort to find better treatments for glioblastoma we tested several currently marketed non-chemotherapy drugs for their ability to enhance the standard cytotoxic drug currently used to treat glioblastoma- temozolomide. We tested four antiviral drugs- acyclovir, cidofovir, maraviroc, ritonavir, and an anti-emetic, aprepitant. We found no cytotoxicity of cidofovir and discussed possible reasons for discrepancy from previous findings of others. We also found no cytotoxicity from acyclovir or maraviroc also in contradistinction to predictions. Cytotoxicity to glioma cell line GAMG for temozolomide alone was 14 %, aprepitant alone 7 %, ritonavir alone 14 %, while temozolomide + aprepitant was 19 %, temozolomide + ritonavir 34 %, ritonavir + aprepitant 64 %, and all three, temozolomide + ritonavir + aprepitant 78 %. We conclude that a remarkable synergy exists between aprepitant and ritonavir. Given the long clinical experience with these two well-tolerated drugs in treating non-cancer conditions, and the current median survival of glioblastoma of 2 years, a trial is warranted of adding these two simple drugs to current standard treatment with temozolomide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frosina G (2015) Limited advances in therapy of glioblastoma trigger re-consideration of research policy. Crit Rev Oncol Hematol. doi:10.1016/j.critrevonc.2015.05.013

    PubMed  Google Scholar 

  2. Alifieris C, Trafalis DT (2015) Glioblastoma multiforme: pathogenesis and treatment. Pharmacol Ther 152:63–82

    Article  PubMed  CAS  Google Scholar 

  3. Aapro M, Carides A, Rapoport BL, Schmoll HJ, Zhang L, Warr D (2015) Aprepitant and fosaprepitant: a 10-year review of efficacy and safety. Oncologist 20(4):450–458

    Article  PubMed  CAS  Google Scholar 

  4. Aapro MS, Schmoll HJ, Jahn F, Carides AD, Webb RT (2013) Review of the efficacy of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in a range of tumor types. Cancer Treat Rev 39(1):113–117

    Article  PubMed  CAS  Google Scholar 

  5. Coveñas R, Muñoz M (2014) Cancer progression and substance P. Histol Histopathol 29(7):881–890

    PubMed  Google Scholar 

  6. Kast RE (2009) Why cerebellar glioblastoma is rare and how that indicates adjunctive use of the FDA-approved anti-emetic aprepitant might retard cerebral glioblastoma growth: a new hypothesis to an old question. Clin Transl Oncol 11(7):408–410

    Article  PubMed  Google Scholar 

  7. Kast RE, Karpel-Massler G, Halatsch ME (2014) CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 5(18):8052–8082

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kast RE, Boockvar JA, Bruning A, Cappello F, Chang WW, Cvek B, Dou QP, Dueñas-González A, Efferth T, Focosi D, Ghaffari SH, Karpel-Massler G, Ketola K, Khoshnevisan A, Keizman D, Magne N, Marosi C, McDonald K, Muñoz M, Paranjpe A, Pourgholami MH, Sardi I, Sella A, Srivenugopal KS, Tuccori M, Wang W, Wirtz CR, Halatsch ME (2013) A conceptually new treatment approach for relapsed glioblastoma: coordinated undermining of survival paths with nine repurposed drugs (CUSP9) by the International Initiative for Accelerated Improvement of Glioblastoma Care. Oncotarget 4(4):502–530

    Article  PubMed  PubMed Central  Google Scholar 

  9. Palma C, Bigioni M, Irrissuto C, Nardelli F, Maggi CA, Manzini S (2000) Anti-tumour activity of tachykinin NK1 receptor antagonists on human glioma U373 MG xenograft. Br J Cancer 82(2):480–487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Muñoz M, Rosso M (2010) The NK-1 receptor antagonist aprepitant as a broad spectrum antitumor drug. Invest New Drugs 28(2):187–193

    Article  PubMed  Google Scholar 

  11. De Clercq E (2003) Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retrovirus infections. Clin Microbiol Rev 16(4):569–596

    Article  PubMed  PubMed Central  Google Scholar 

  12. Van Pachterbeke C, Bucella D, Rozenberg S, Manigart Y, Gilles C, Larsimont D, Vanden Houte K, Reynders M, Snoeck R, Bossens M (2009) Topical treatment of CIN 2 + by cidofovir: results of a phase II, double-blind, prospective, placebo-controlled study. Gynecol Oncol 115(1):69–74

    Article  PubMed  Google Scholar 

  13. Moyo TK, Richards KL, Damania B (2010) Use of cidofovir for the treatment of HIV-negative human herpes virus-8-associated primary effusion lymphoma. Clin Adv Hematol Oncol 8(5):372–374

    PubMed  PubMed Central  Google Scholar 

  14. De Schutter T, Andrei G, Topalis D, Naesens L, Snoeck R (2013) Cidofovir selectivity is based on the different response of normal and cancer cells to DNA damage. BMC Med Genomics 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hadaczek P, Ozawa T, Soroceanu L, Yoshida Y, Matlaf L, Singer E, Fiallos E, James CD, Cobbs CS (2013) Cidofovir: a novel antitumor agent for glioblastoma. Clin Cancer Res 19(23):6473–6483

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Liekens S, Noppen S, Gijsbers S, Sienaert R, Ronca R, Tobia C, Presta M (2015) The broad-spectrum anti-DNA virus agent cidofovir inhibits lung metastasis of virus-independent, FGF2-driven tumors. Oncotarget 6(7):4633–4648

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang F, Yang L, Shi L, Li Q, Zhang G, Wu J, Zheng J, Jiao B (2015) Nuclear translocation of fibroblast growth factor-2 (FGF2) is regulated by karyopherin-β2 and Ran GTPase in human glioblastoma cells. Oncotarget 6(25):21468–21478

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu J, Feng X, Zhang B, Li J, Xu X, Liu J, Wang X, Wang J, Tong X (2014) Blocking the bFGF/STAT3 interaction through specific signaling pathways induces apoptosis in glioblastoma cells. J Neurooncol 120(1):33–41

    Article  PubMed  CAS  Google Scholar 

  19. Ader I, Delmas C, Skuli N, Bonnet J, Schaeffer P, Bono F, Cohen-Jonathan-Moyal E, Toulas C (2014) Preclinical evidence that SSR128129E- a novel small-molecule multi-fibroblast growth factor receptor blocker- radiosensitises human glioblastoma. Eur J Cancer 50(13):2351–2359

    Article  PubMed  CAS  Google Scholar 

  20. Haley EM, Kim Y (2014) The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett 346(1):1–5

    Article  PubMed  CAS  Google Scholar 

  21. Lieberman-Blum SS, Fung HB, Bandres JC (2008) Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther 30(7):1228–1250

    Article  PubMed  CAS  Google Scholar 

  22. Kast RE (2010) Glioblastoma: synergy of growth promotion between CCL5 and NK-1R can be thwarted by blocking CCL5 with miraviroc, an FDA approved anti-HIV drug and blocking NK-1R with aprepitant, an FDA approved anti-nausea drug. J Clin Pharm Ther 35(6):657–663

    Article  PubMed  CAS  Google Scholar 

  23. Rappa F, Cappello F, Halatsch ME, Scheuerle A, Kast RE (2013) Aldehyde dehydrogenase and HSP90 co-localize in human glioblastoma biopsy cells. Biochimie 95(4):782–786

    Article  PubMed  CAS  Google Scholar 

  24. Kast RE (2015) The role of interleukin-18 in glioblastoma pathology implies therapeutic potential of two old drugs-disulfiram and ritonavir. Chin J Cancer 34(4):161–165

    PubMed  CAS  Google Scholar 

  25. Sato A (2015) The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies. Onco Targets Ther 8:761–768

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chow WA, Jiang C, Guan M (2009) Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol 10(1):61–71

    Article  PubMed  CAS  Google Scholar 

  27. Liu R, Zhang L, Yang J, Zhang X, Mikkelsen R, Song S, Zhou H (2015) HIV protease inhibitors sensitize human head and neck squamous carcinoma cells to radiation by activating endoplasmic reticulum stress. PLoS One 10(5):e0125928

    Article  PubMed  PubMed Central  Google Scholar 

  28. Laurent N, de Bouard S, Guillamo JS, Christov C, Zini R, Jouault H, Andre P, Lotteau V, Peschanski M (2004) Effects of the proteasome inhibitor ritonavir on glioma growth in vitro and in vivo. Mol Cancer Ther 3(2):129–136

    PubMed  CAS  Google Scholar 

  29. Bruening A, Jueckstock J (2015) Misfolded proteins: from little villains to little helpers in the fight against cancer. Front Oncol 5:47

    Google Scholar 

  30. Weiss M, Kost B, Renner-Mueller I, Wolf E, Mylonas I, Bruening A (2015) Efavirenz causes oxidative stress, endoplasmic reticulum stress, and autophagy in endothelial cells. Cardiovasc Toxicol. doi:10.1007/s12012-015-9314-2

    Google Scholar 

  31. Gills JJ, Lopiccolo J, Tsurutani J, Shoemaker RH, Best CJ, Abu-Asab MS, Borojerdi J, Warfel NA, Gardner ER, Danish M, Hollander MC, Kawabata S, Tsokos M, Figg WD, Steeg PS, Dennis PA (2007) Nelfinavir, a lead HIV protease inhibitor, is a broad-spectrum, anticancer agent that induces endoplasmic reticulum stress, autophagy, and apoptosis in vitro and in vivo. Clin Cancer Res 13(17):5183–5194

    Article  PubMed  CAS  Google Scholar 

  32. Muñoz M, Coveñas R (2013) Involvement of substance P and the NK-1 receptor in cancer progression. Peptides 48:1–9

    Article  PubMed  Google Scholar 

  33. Muñoz M, Rosso M, Pérez A, Coveñas R, Rosso R, Zamarriego C, Piruat JI (2005) The NK1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on neuroblastoma and glioma cell lines. Neuropeptides 39(4):427–432

    Article  PubMed  Google Scholar 

  34. Nakajima Y, Tsuchida K, Negishi M, Ito S, Nakanishi S (1992) Direct linkage of three tachykinin receptors to stimulation of both phosphatidylinositol hydrolysis and cAMP cascades in transfected Chinese hamster ovary cells. J Biol Chem 267(4):2437–2442

    PubMed  CAS  Google Scholar 

  35. Takeda Y, Blount P, Sachais BS, Hershey AD, Raddatz R, Krause JE (1992) Ligand binding kinetics of substance P and neurokinin A receptors stably expressed in Chinese hamster ovary cells and evidence for differential stimulation of inositol 1, 4, 5-triphosphate and cyclic AMP second messenger responses. J Neurochem 59(2):740–745

    Article  PubMed  CAS  Google Scholar 

  36. Akazawa T, Kwatra SG, Goldsmith LE, Richardson MD, Cox EA, Sampson JH, Kwatra MM (2009) A constitutively active form of neurokinin 1 receptor and neurokinin 1 receptor-mediated apoptosis in glioblastomas. J Neurochem 109(4):1079–1086

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KU, Kandela I, Wei C, Singhal S, Koblinski JE, Raje NS, Rosen ST, Shanmugam M (2015) Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res 21(5):1161–1171

    Article  PubMed  CAS  Google Scholar 

  38. Batchu RB, Gruzdyn OV, Bryant CS, Qazi AM, Kumar S, Chamala S, Kung ST, Sanka RS, Puttagunta US, Weaver DW, Gruber SA (2014) Ritonavir-mediated induction of apoptosis in pancreatic cancer occurs via the RB/E2F-1 and AKT pathways. Pharmaceuticals (Basel) 7(1):46–57

    Article  CAS  Google Scholar 

  39. Kraus M, Mueller-Ide H, Rueckrich T, Bader J, Overkleeft H, Driessen C (2014) Ritonavir, nelfinavir, saquinavir and lopinavir induce proteotoxic stress in acute myeloid leukemia cells and sensitize them for proteasome inhibitor treatment at low micromolar drug concentrations. Leuk Res 38(3):383–392

    Article  PubMed  CAS  Google Scholar 

  40. Manak MM, Moshkoff DA, Nguyen LT, Meshki J, Tebas P, Tuluc F, Douglas SD (2010) Anti-HIV-1 activity of the neurokinin-1 receptor antagonist aprepitant and synergistic interactions with other antiretrovirals. AIDS 24(18):2789–2796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Muñoz M, Coveñas R (2013) Safety of neurokinin-1 receptor antagonists. Expert Opin Drug Saf 12(5):673–685

    Article  PubMed  Google Scholar 

  42. Kramer MS, Cutler N, Feighner J, Shrivastava R, Carman J, Sramek JJ, Reines SA, Liu G, Snavely D, Wyatt-knowles E, Halle JJ, Mills SG, MacCoss M, Swain CJ, Harrison T, Hill RG, Hefti F, Scolnick EM, Cascieri MA, Chicchi GG, Sadowski S, Williams AR, Hewson L, Smith D, Carlsson EJ, Hargreaves RJ, Rupniak NM (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281(5383):1640–1645

    Article  PubMed  CAS  Google Scholar 

  43. Harford-Wright E, Lewis KM, Ghabriel MN, Vink R (2014) Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors. PLoS ONE 9(5):e97002

    Article  PubMed  PubMed Central  Google Scholar 

  44. Endo T, Saijo T, Haneda E, Maeda J, Tokunaga M, Zhang MR, Kannami A, Asai H, Suzuki M, Suhara T, Higuchi M (2015) Quantification of central substance P receptor occupancy by aprepitant using small animal positron emission tomography. Int J Neuropsychopharmacol 18(2):pyu030

    Article  PubMed Central  Google Scholar 

  45. Bergström M, Hargreaves RJ, Burns HD, Goldberg MR, Sciberras D, Reines SA, Petty KJ, Ogren M, Antoni G, Långström B, Eskola O, Scheinin M, Solin O, Majumdar AK, Constanzer ML, Battisti WP, Bradstreet TE, Gargano C, Hietala J (2004) Human positron emission tomography studies of brain neurokinin 1 receptor occupancy by aprepitant. Biol Psychiatry 55(10):1007–1012

    Article  PubMed  Google Scholar 

  46. Anthonypillai C, Sanderson RN, Gibbs JE, Thomas SA (2004) The distribution of the HIV protease inhibitor, ritonavir, to the brain, cerebrospinal fluid, and choroid plexuses of the guinea pig. J Pharmacol ExpTher 308(3):912–920

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Javier Muñoz (University of Sevilla, Spain) and Mr. José Manuel Praena-Fernández (Virgen del Rocío University Hospital, Statistical service, Sevilla, Spain) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Richard E. Kast or Miguel Muñoz.

Ethics declarations

Conflicts of interest

USPTO Application No. 20090012086 “Use of non-peptide NK-1 receptor antagonists for the production of apoptosis in tumor cells” (Miguel Muñoz).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kast, R.E., Ramiro, S., Lladó, S. et al. Antitumor action of temozolomide, ritonavir and aprepitant against human glioma cells. J Neurooncol 126, 425–431 (2016). https://doi.org/10.1007/s11060-015-1996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1996-6

Keywords

Navigation