Skip to main content

Advertisement

Log in

ATP5A1 and ATP5B are highly expressed in glioblastoma tumor cells and endothelial cells of microvascular proliferation

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Glioblastoma (GBM) is the most common primary malignant brain tumor. Microvascular proliferation is one of the characteristic pathologic features of GBM. Mitochondrial dysfunction plays an important role in the pathogenesis of GBM. In this study, microvascular proliferation from GBM and normal brain blood vessels were laser microdissected and total RNA was isolated from these microvasculatures. The difference of mRNA expression profiles among GBM microvasculature, normal brain blood vessels and GBM tumor cells was evaluated by mitochondria and metabolism PCR gene arrays. It was found that the mRNA levels of ATP5A1 and ATP5B in GBM tumor cells as well as microvascular proliferation were significantly higher compared with normal brain blood vessels. Immunohistochemical stains with anti-ATP5A1 antibody or anti-ATP5B antibody were performed on tissue microarray, which demonstrated strongly positive expression of ATP5A1 and ATP5B in GBM tumor cells and GBM microvascular proliferation while normal blood vessels were negative. By analyzing The Cancer Genome Atlas data sets for GBM and other cancers, genomic DNA alterations (mutation, amplification or deletion) were less likely the reason for the high expression of ATP5A1 and ATP5B in GBM. Our miRNA microarray data showed that miRNAs that target ATP5A1 or ATP5B were down-regulated, which might be the most likely reason for the high expression of ATP5A1 and ATP5B in GBM tumor cells and microvascular proliferation. These findings help us better understand the pathogenesis of GBM, and agents against ATP5A1 and/or ATP5B might effectively kill both tumor cells and microvascular proliferation in GBM. MiRNAs, such as Let-7f, miR-16, miR-23, miR-100 and miR-101, that target ATP5A1 or ATP5B, might be potential therapeutic agents for GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kleihues P, Burger P, Aldape K et al (2007) Glioblastoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumours of the cenral nervous system. IARC Press, Lyon, pp 33–49

    Google Scholar 

  2. Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70:779–787

    Article  PubMed  CAS  Google Scholar 

  3. Wesseling P, Claes A, Maass C (2007) Combined temozolomide (TMZ) and anti-angiogenic therapy of gliomas: a capricious cocktail? In: Twelfth annual meeting of the society for neuro-oncology

  4. Benard G, Rossignol R (2008) Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 10:1313–1342

    Article  PubMed  CAS  Google Scholar 

  5. DiMauro S, Schon EA, Carelli V, Hirano M (2013) The clinical maze of mitochondrial neurology. Nat Rev Neurol 9:429–444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  7. Ziegler DS, Kung AL, Kieran MW (2008) Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol 26:493–500

    Article  PubMed  CAS  Google Scholar 

  8. Ordys BB, Launay S, Deighton RF, McCulloch J, Whittle IR (2010) The role of mitochondria in glioma pathophysiology. Mol Neurobiol 42:64–75

    Article  PubMed  CAS  Google Scholar 

  9. Griguer CE, Oliva CR (2011) Bioenergetics pathways and therapeutic resistance in gliomas: emerging role of mitochondria. Curr Pharm Des 17:2421–2427

    Article  PubMed  CAS  Google Scholar 

  10. Deighton RF, Le BT, Martin SF et al (2014) Interactions among mitochondrial proteins altered in glioblastoma. J Neurooncol 118:247–256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat Med 4:844–847

    Article  PubMed  CAS  Google Scholar 

  12. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  13. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:l1

    Article  Google Scholar 

  14. Hsu SD, Tseng YT, Shrestha S et al (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab (Lond) 7:7

    Article  Google Scholar 

  16. Nagy A, Eder K, Selak MA, Kalman B (2015) Mitochondrial energy metabolism and apoptosis regulation in glioblastoma. Brain Res 1595:127–142

    Article  PubMed  CAS  Google Scholar 

  17. Geyik E, Igci YZ, Pala E et al (2014) Investigation of the association between ATP2B4 and ATP5B genes with colorectal cancer. Gene 540:178–182

    Article  PubMed  CAS  Google Scholar 

  18. Eto I (2011) Upstream molecular signaling pathways of p27(Kip1) expression in human breast cancer cells in vitro: differential effects of 4-hydroxytamoxifen and deficiency of either D-(+)-glucose or L-leucine. Cancer Cell Int 11:31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Ahmed FE (2007) Role of miRNA in carcinogenesis and biomarker selection: a methodological view. Expert Rev Mol Diagn 7:569–603

    Article  PubMed  CAS  Google Scholar 

  20. Liu Z, Liu Y, Li L et al (2014) MiR-7-5p is frequently downregulated in glioblastoma microvasculature and inhibits vascular endothelial cell proliferation by targeting RAF1. Tumour Biol 35:10177–10184

    Article  PubMed  CAS  Google Scholar 

  21. Yan S, Han X, Xue H et al (2015) Let-7f inhibits glioma cell proliferation, migration, and invasion by targeting periostin. J Cell Biochem 116:1680–1692

    Article  PubMed  CAS  Google Scholar 

  22. Zhang N, Zhou H, Yu L, Lin J, Sheng H, Wang M (2014) The influence of miR-16 on proliferation and angiogenesis of U87MG in vivo. Zhonghua Yi Xue Za Zhi 94:2618–2621

    PubMed  CAS  Google Scholar 

  23. Wang Q, Li X, Zhu Y, Yang P (2014) MicroRNA-16 suppresses epithelial-mesenchymal transition related gene expression in human glioma. Mol Med Rep 10:3310–3314

    PubMed  CAS  Google Scholar 

  24. Yang TQ, Lu XJ, Wu TF et al (2014) MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-kappaB1/MMP9 signaling pathway. Cancer Sci 105:265–271

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Loftus JC, Ross JT, Paquette KM et al (2012) miRNA expression profiling in migrating glioblastoma cells: regulation of cell migration and invasion by miR-23b via targeting of Pyk2. PLoS One 7:e39818

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen L, Zhang K, Shi Z et al (2014) A lentivirus-mediated miR-23b sponge diminishes the malignant phenotype of glioma cells in vitro and in vivo. Oncol Rep 31:1573–1580

    PubMed  Google Scholar 

  27. Alrfaei BM, Vemuganti R, Kuo JS (2013) microRNA-100 targets SMRT/NCOR2, reduces proliferation, and improves survival in glioblastoma animal models. PLoS One 8:e80865

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ng WL, Yan D, Zhang X, Mo YY, Wang Y (2010) Over-expression of miR-100 is responsible for the low-expression of ATM in the human glioma cell line: M059J. DNA Repair (Amst) 9:1170–1175

    Article  CAS  Google Scholar 

  29. Xiaoping L, Zhibin Y, Wenjuan L et al (2013) CPEB1, a histone-modified hypomethylated gene, is regulated by miR-101 and involved in cell senescence in glioma. Cell Death Dis 4:e675

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Sun JY, Xiao WZ, Wang F et al (2015) MicroRNA-320 inhibits cell proliferation in glioma by targeting E2F1. Mol Med Rep 12:2355–2359

    PubMed  CAS  Google Scholar 

  31. Zheng SQ, Li YX, Zhang Y, Li X, Tang H (2011) MiR-101 regulates HSV-1 replication by targeting ATP5B. Antiviral Res 89:219–226

    Article  PubMed  CAS  Google Scholar 

  32. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Chang HY, Huang TC, Chen NN, Huang HC, Juan HF (2014) Combination therapy targeting ectopic ATP synthase and 26S proteasome induces ER stress in breast cancer cells. Cell Death Dis 5:e1540

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu YH, Hu CW, Chien CW, Chen YJ, Huang HC, Juan HF (2013) Quantitative proteomic analysis of human lung tumor xenografts treated with the ectopic ATP synthase inhibitor citreoviridin. PLoS One 8:e70642

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Lim SH, Wu L, Kiew LV, Chung LY, Burgess K, Lee HB (2014) Rosamines targeting the cancer oxidative phosphorylation pathway. PLoS One 9:e82934

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We give special thanks to Dr. Betty Diamond, who provided the lab space and equipments. We also appreciate help and support from all her lab members. We are thankful for Mr. Daniel Loen and Ms. Jill Wishinsky for managing the Grant. Dept. of Pathology and Lab. Medicine: We thank Dr. James Crawford for his support and encouragement, Ms. Claudine Alexis for ordering all our materials, and people in histology laboratory for technical support.

Funding

This work was supported by North Shore-LIJ Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yi Li.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Li, J.Y. ATP5A1 and ATP5B are highly expressed in glioblastoma tumor cells and endothelial cells of microvascular proliferation. J Neurooncol 126, 405–413 (2016). https://doi.org/10.1007/s11060-015-1984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-015-1984-x

Keywords

Navigation