Skip to main content
Log in

Phosphorylation of AKT induced by phosphorylated Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells in vitro

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The aim of this study is to determine whether phosphorylation of AKT could be effected by t-AUCB-induced p-Hsp27 and whether p-AKT inhibition sensitizes glioblastoma cells to t-AUCB, and to evaluate the effects of simultaneous inhibition of p-Hsp27 and p-AKT on t-AUCB treated glioblastoma cells. Cell growth was detected using CCK-8 assay; Caspase-3 activity assay kits and flow cytometry were used in apoptosis analysis; Western blot analysis was used to detect p-Hsp27 and p-AKT levels; RNA interference using the siRNA oligos of Hsp27 was performed to knockdown gene expression of Hsp27. All data were analyzed by the Student-Newman-Keul’s test. We demonstrated that t-AUCB treatment induces AKT phosphorylation by activating Hsp27 in U251 and LN443 cell lines. Inhibition of AKT phosphorylation by AKT inhibitor IV sensitizes glioblastoma cells to t-AUCB, strengthens t-AUCB suppressing cell growth and inducing cell apoptosis. We also found inhibiting both p-Hsp27 and p-AKT synergistically strengthen t-AUCB suppressing cell growth. Thus, p-AKT induced by p-Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells. Targeting p-Hsp27 and/or p-AKT may be a potential effective strategy for the treatment of glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li JY, Huang JY, Li M, Zhang H, Xing B, Chen G, Wei D, Gu PY, Hu WX (2012) Anisomycin induces glioma cell death via down-regulation of PP2A catalytic subunit in vitro. Acta Pharmacol Sin 33:935–940. doi:10.1038/aps.2012.46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Nadkarni A, Shrivastav M, Mladek AC, Schwingler PM, Grogan PT, Chen J, Sarkaria JN (2012) ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells. J Neurooncol 110:349–357. doi:10.1007/s11060-012-0979-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Vinjamuri M, Adumala RR, Altaha R, Hobbs GR, Crowell EB Jr (2009) Comparative analysis of temozolomide (TMZ) versus 1,3-bis (2-chloroethyl)-1 nitrosourea (BCNU) in newly diagnosed glioblastoma multiforme (GBM) patients. J Neurooncol 91:221–225. doi:10.1007/s11060-008-9702-6

    Article  CAS  PubMed  Google Scholar 

  4. Spence AM, Peterson RA, Scharnhorst JD, Silbergeld DL, Rostomily RC (2004) Phase II study of concurrent continuous Temozolomide (TMZ) and Tamoxifen (TMX) for recurrent malignant astrocytic gliomas. J Neurooncol 70:91–95

    Article  PubMed  Google Scholar 

  5. Christodoulou C, Bafaloukos D, Linardou H, Aravantinos G, Bamias A, Carina M, Klouvas G, Skarlos D, Hellenic Cooperative Oncology G (2005) Temozolomide (TMZ) combined with cisplatin (CDDP) in patients with brain metastases from solid tumors: a Hellenic Cooperative Oncology Group (HeCOG) phase II study. J Neurooncol 71:61–65. doi:10.1007/s11060-004-9176-0

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhary KR, Abukhashim M, Hwang SH, Hammock BD, Seubert JM (2010) Inhibition of soluble epoxide hydrolase by trans-4- [4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J Cardiovasc Pharmacol 55:67–73. doi:10.1097/FJC.0b013e3181c37d69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Liu JY, Tsai HJ, Hwang SH, Jones PD, Morisseau C, Hammock BD (2009) Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation. Br J Pharmacol 156:284–296. doi:10.1111/j.1476-5381.2008.00009.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Li J, Liu H, Xing B, Yu Y, Wang H, Chen G, Gu B, Zhang G, Wei D, Gu P, Li M, Hu W (2012) t-AUCB, an improved sEH inhibitor, suppresses human glioblastoma cell growth by activating NF-kappaB-p65. J Neurooncol 108:385–393. doi:10.1007/s11060-012-0841-4

    Article  CAS  PubMed  Google Scholar 

  9. Li J, Hu W, Lan Q (2012) The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of Hsp27. J Neurooncol 110:187–194. doi:10.1007/s11060-012-0963-8

    Article  PubMed  Google Scholar 

  10. Franke TF, Kaplan DR, Cantley LC (1997) PI3 K: downstream AKTion blocks apoptosis. Cell 88:435–437

    Article  CAS  PubMed  Google Scholar 

  11. Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602. doi:10.1038/376599a0

    Article  CAS  PubMed  Google Scholar 

  12. Zheng C, Lin Z, Zhao ZJ, Yang Y, Niu H, Shen X (2006) MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J Biol Chem 281:37215–37226. doi:10.1074/jbc.M603622200

    Article  CAS  PubMed  Google Scholar 

  13. Wu R, Kausar H, Johnson P, Montoya-Durango DE, Merchant M, Rane MJ (2007) Hsp27 regulates Akt activation and polymorphonuclear leukocyte apoptosis by scaffolding MK2 to Akt signal complex. J Biol Chem 282:21598–21608. doi:10.1074/jbc.M611316200

    Article  CAS  PubMed  Google Scholar 

  14. Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Paul C, Manero F, Gonin S, Kretz-Remy C, Virot S, Arrigo AP (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22:816–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Garrido C, Bruey JM, Fromentin A, Hammann A, Arrigo AP, Solary E (1999) HSP27 inhibits cytochrome c-dependent activation of procaspase-9. FASEB J 13:2061–2070

    CAS  PubMed  Google Scholar 

  17. Concannon CG, Orrenius S, Samali A (2001) Hsp27 inhibits cytochrome c-mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c. Gene Expr 9:195–201

    CAS  PubMed  Google Scholar 

  18. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes - integrating cell survival and death. J Biosci 32:595–610

    Article  CAS  PubMed  Google Scholar 

  19. Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantome A, Plenchette S, Khochbin S, Solary E, Garrido C (2003) HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23:5790–5802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kang SH, Kang KW, Kim KH, Kwon B, Kim SK, Lee HY, Kong SY, Lee ES, Jang SG, Yoo BC (2008) Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8:286. doi:10.1186/1471-2407-8-286

    Article  PubMed Central  PubMed  Google Scholar 

  22. Arts HJ, Hollema H, Lemstra W, Willemse PH, De Vries EG, Kampinga HH, Van der Zee AG (1999) Heat-shock-protein-27 (Hsp27) expression in ovarian carcinoma: relation in response to chemotherapy and prognosis. Int J Cancer 84:234–238. doi:10.1002/(SICI)1097-0215(19990621)84

    Article  CAS  PubMed  Google Scholar 

  23. King KL, Li AF, Chau GY, Chi CW, Wu CW, Huang CL, Lui WY (2000) Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival. Cancer 88:2464–2470. doi:10.1002/1097-0142(20000601)88

    Article  CAS  PubMed  Google Scholar 

  24. Golembieski WA, Thomas SL, Schultz CR, Yunker CK, McClung HM, Lemke N, Cazacu S, Barker T, Sage EH, Brodie C, Rempel SA (2008) HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia 56:1061–1075. doi:10.1002/glia.20679

    Article  PubMed  Google Scholar 

  25. Hsu HS, Lin JH, Huang WC, Hsu TW, Su K, Chiou SH, Tsai YT, Hung SC (2011) Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 117:1516–1528. doi:10.1002/cncr.25599

    Article  CAS  PubMed  Google Scholar 

  26. de Graauw M, Tijdens I, Cramer R, Corless S, Timms JF, van de Water B (2005) Heat shock protein 27 is the major differentially phosphorylated protein involved in renal epithelial cellular stress response and controls focal adhesion organization and apoptosis. J Biol Chem 280:29885–29898. doi:10.1074/jbc.M412708200

    Article  PubMed  Google Scholar 

  27. Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W, Ping P, McLeish KR (2001) p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils. J Biol Chem 276:3517–3523. doi:10.1074/jbc.M005953200

    Article  CAS  PubMed  Google Scholar 

  28. Rane MJ, Pan Y, Singh S, Powell DW, Wu R, Cummins T, Chen Q, McLeish KR, Klein JB (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J Biol Chem 278:27828–27835. doi:10.1074/jbc.M303417200

    Article  CAS  PubMed  Google Scholar 

  29. Zhang QS, Maddock DA, Chen JP, Heo S, Chiu C, Lai D, Souza K, Mehta S, Wan YS (2001) Cytokine-induced p38 activation feedback regulates the prolonged activation of AKT cell survival pathway initiated by reactive oxygen species in response to UV irradiation in human keratinocytes. Int J Oncol 19:1057–1061

    CAS  PubMed  Google Scholar 

  30. Shiue H, Musch MW, Wang Y, Chang EB, Turner JR (2005) Akt2 phosphorylates ezrin to trigger NHE3 translocation and activation. J Biol Chem 280:1688–1695. doi:10.1074/jbc.M409471200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cabane C, Coldefy AS, Yeow K, Derijard B (2004) The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell Signal 16:1405–1415. doi:10.1016/j.cellsig.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  32. Cappellini A, Tazzari PL, Mantovani I, Billi AM, Tassi C, Ricci F, Conte R, Martelli AM (2005) Antiapoptotic role of p38 mitogen activated protein kinase in Jurkat T cells and normal human T lymphocytes treated with 8-methoxypsoralen and ultraviolet-A radiation. Apoptosis 10:141–152. doi:10.1007/s10495-005-6069-4

    Article  CAS  PubMed  Google Scholar 

  33. Nakajima K, Hirade K, Ishisaki A, Matsuno H, Suga H, Kanno Y, Shu E, Kitajima Y, Katagiri Y, Kozawa O (2005) Akt regulates thrombin-induced HSP27 phosphorylation in aortic smooth muscle cells: function at a point downstream from p38 MAP kinase. Life Sci 77:96–107. doi:10.1016/j.lfs.2004.12.017

    Article  CAS  PubMed  Google Scholar 

  34. Morissette MR, Cook SA, Foo S, McKoy G, Ashida N, Novikov M, Scherrer-Crosbie M, Li L, Matsui T, Brooks G, Rosenzweig A (2006) Myostatin regulates cardiomyocyte growth through modulation of Akt signaling. Circ Res 99:15–24. doi:10.1161/01.RES.0000231290.45676.d4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA (2012) Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 11:20. doi:10.1186/1476-4598-11-20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Huang SC, Chan DT, Smyth DJ, Ball G, Gounaris K, Selkirk ME (2010) Activation of Nippostrongylus brasiliensis infective larvae is regulated by a pathway distinct from the hookworm Ancylostoma caninum. Int J Parasitol 40:1619–1628. doi:10.1016/j.ijpara.2010.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Chautard E, Loubeau G, Tchirkov A, Chassagne J, Vermot-Desroches C, Morel L, Verrelle P (2010) Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro Oncol 12:434–443. doi:10.1093/neuonc/nop059

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Bruce D. Hammock for providing the sEH inhibitor t-AUCB. This study was supported by research fund from Chinese Ministry of Health (by Qing Lan, No. WKJ20052031) and National Natural Science Foundation of China (by Junyang Li, NO.81301905).

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lan.

Additional information

Rujun Li and Junyang Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Li, J., Sang, D. et al. Phosphorylation of AKT induced by phosphorylated Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells in vitro. J Neurooncol 121, 83–89 (2015). https://doi.org/10.1007/s11060-014-1610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-014-1610-3

Keywords

Navigation