Skip to main content

Advertisement

Log in

The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of Hsp27

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

We previously reported that sEH inhibitor t-AUCB suppresses the growth of human glioblastoma U251 and U87 cell lines and induces cell-cycle G0/G1 phase arrest. In present study, we found even 96 h-treatment of 200 μM t-AUCB can not induce apoptosis in U251 and U87 cells. We also revealed that 200 μM t-AUCB significantly elevates the activation of p38 MAPK, MAPKAPK2 and Hsp27. The p38 MAPK inhibitor SB203580 and the inhibitor of Hsp27 phosphorylation, KRIBB3, were used to investigate the mechanism of the apoptosis-resistance. The results showed that, after blocking the activation of Hsp27 by SB203580 or KRIBB3, 200 μM t-AUCB significantly induces apoptosis and increases caspase-3 activities in U251 and U87 cells. Our data demonstrated that t-AUCB induces cell apoptosis after blocking itself-induced activation of Hsp27, and that the activation of Hsp27 may confer chemoresistance in GBM cells. The combination of t-AUCB and the inhibitor of Hsp27 phosphorylation may be a potential strategy for treatment of glioblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Edin ML, Wang Z, Bradbury JA, Graves JP, Lih FB, DeGraff LM, Foley JF, Torphy R, Ronnekleiv OK, Tomer KB, Lee CR, Zeldin DC (2011) Endothelial expression of human cytochrome P450 epoxygenase CYP2C8 increases susceptibility to ischemia-reperfusion injury in isolated mouse heart. FASEB J 25:3436–3447. doi:10.1096/fj.11-188300

    Article  PubMed  CAS  Google Scholar 

  2. Merabet N, Bellien J, Glevarec E, Nicol L, Lucas D, Remy-Jouet I, Bounoure F, Dreano Y, Wecker D, Thuillez C, Mulder P (2012) Soluble epoxide hydrolase inhibition improves myocardial perfusion and function in experimental heart failure. J Mol Cell Cardiol 52:660–666. doi:10.1016/j.yjmcc.2011.11.015

    Article  PubMed  CAS  Google Scholar 

  3. Davis BB, Liu JY, Tancredi DJ, Wang L, Simon SI, Hammock BD, Pinkerton KE (2011) The anti-inflammatory effects of soluble epoxide hydrolase inhibitors are independent of leukocyte recruitment. Biochem Biophys Res Commun 410:494–500. doi:10.1016/j.bbrc.2011.06.008

    Article  PubMed  CAS  Google Scholar 

  4. Panigrahy D, Kaipainen A, Greene ER, Huang S (2010) Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metast Rev 29:723–735. doi:10.1007/s10555-010-9264-x

    Article  CAS  Google Scholar 

  5. Chaudhary KR, Abukhashim M, Hwang SH, Hammock BD, Seubert JM (2010) Inhibition of soluble epoxide hydrolase by trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is protective against ischemia-reperfusion injury. J Cardiovasc Pharmacol 55:67–73. doi:10.1097/FJC.0b013e3181c37d69

    Article  PubMed  CAS  Google Scholar 

  6. Liu JY, Tsai HJ, Hwang SH, Jones PD, Morisseau C, Hammock BD (2009) Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation. Br J Pharmacol 156:284–296. doi:10.1111/j.1476-5381.2008.00009.x

    Article  PubMed  CAS  Google Scholar 

  7. Li J, Liu H, Xing B, Yu Y, Wang H, Chen G, Gu B, Zhang G, Wei D, Gu P, Li M, Hu W (2012) t-AUCB, an improved sEH inhibitor, suppresses human glioblastoma cell growth by activating NF-kappaB-p65. J Neurooncol 108:385–393. doi:10.1007/s11060-012-0841-4

    Article  PubMed  CAS  Google Scholar 

  8. Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70. doi:10.1023/A:10216011030

    Article  PubMed  CAS  Google Scholar 

  9. Hsu HS, Lin JH, Huang WC, Hsu TW, Su K, Chiou SH, Tsai YT, Hung SC (2011) Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 117:1516–1528. doi:10.1002/cncr.25599

    Article  PubMed  CAS  Google Scholar 

  10. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    Article  PubMed  CAS  Google Scholar 

  11. Paravati AJ, Heron DE, Landsittel D, Flickinger JC, Mintz A, Chen YF, Huq MS (2011) Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology group-recursive partitioning analysis in the IMRT and temozolomide era. J Neurooncol 104:339–349. doi:10.1007/s11060-010-0499-8

    Article  PubMed  Google Scholar 

  12. Malkoun N, Chargari C, Forest F, Fotso MJ, Cartier L, Auberdiac P, Thorin J, Pacaut C, Peoc’h M, Nuti C, Schmitt T, Magne N (2012) Prolonged temozolomide for treatment of glioblastoma: preliminary clinical results and prognostic value of p53 overexpression. J Neurooncol 106:127–133. doi:10.1007/s11060-011-0643-0

    Article  PubMed  CAS  Google Scholar 

  13. Minniti G, Armosini V, Salvati M, Lanzetta G, Caporello P, Mei M, Osti MF, Maurizi RE (2011) Fractionated stereotactic reirradiation and concurrent temozolomide in patients with recurrent glioblastoma. J Neurooncol 103:683–691. doi:10.1007/s11060-010-0446-8

    Article  PubMed  CAS  Google Scholar 

  14. Adachi J, Mishima K, Wakiya K, Suzuki T, Fukuoka K, Yanagisawa T, Matsutani M, Sasaki A, Nishikawa R (2012) O(6)-methylguanine-DNA methyltransferase promoter methylation in 45 primary central nervous system lymphomas: quantitative assessment of methylation and response to temozolomide treatment. J Neurooncol 107:147–153. doi:10.1007/s11060-011-0721-3

    Article  PubMed  CAS  Google Scholar 

  15. Minniti G, Salvati M, Arcella A, Buttarelli F, D’Elia A, Lanzetta G, Esposito V, Scarpino S, Maurizi ER, Giangaspero F (2011) Correlation between O6-methylguanine-DNA methyltransferase and survival in elderly patients with glioblastoma treated with radiotherapy plus concomitant and adjuvant temozolomide. J Neurooncol 102:311–316. doi:10.1007/s11060-010-0324-4

    Article  PubMed  CAS  Google Scholar 

  16. Karayan-Tapon L, Quillien V, Guilhot J, Wager M, Fromont G, Saikali S, Etcheverry A, Hamlat A, Loussouarn D, Campion L, Campone M, Vallette FM, Gratas-Rabbia-Re C (2010) Prognostic value of O6-methylguanine-DNA methyltransferase status in glioblastoma patients, assessed by five different methods. J Neurooncol 97:311–322. doi:10.1007/s11060-009-0031-1

    Article  PubMed  CAS  Google Scholar 

  17. Arrigo AP (2007) The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv Exp Med Biol 594:14–26. doi:10.1007/978-0-387-39975-1_2

    Article  PubMed  Google Scholar 

  18. Dai S, Jia Y, Wu SL, Isenberg JS, Ridnour LA, Bandle RW, Wink DA, Roberts DD, Karger BL (2008) Comprehensive characterization of heat shock protein 27 phosphorylation in human endothelial cells stimulated by the microbial dithiole thiolutin. J Proteome Res 7:4384–4395. doi:10.1021/pr800376w

    Article  PubMed  CAS  Google Scholar 

  19. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  PubMed  CAS  Google Scholar 

  20. Kang SH, Kang KW, Kim KH, Kwon B, Kim SK, Lee HY, Kong SY, Lee ES, Jang SG, Yoo BC (2008) Upregulated HSP27 in human breast cancer cells reduces Herceptin susceptibility by increasing Her2 protein stability. BMC Cancer 8:286. doi:10.1186/1471-2407-8-286

    Article  PubMed  Google Scholar 

  21. Arts HJ, Hollema H, Lemstra W, Willemse PH, De Vries EG, Kampinga HH, Van der Zee AG (1999) Heat-shock-protein-27 (hsp27) expression in ovarian carcinoma: relation in response to chemotherapy and prognosis. Int J Cancer 84:234–238. doi:10.1002/(SICI)1097-0215(19990621)84:3<234:AID-IJC6>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  22. King KL, Li AF, Chau GY, Chi CW, Wu CW, Huang CL, Lui WY (2000) Prognostic significance of heat shock protein-27 expression in hepatocellular carcinoma and its relation to histologic grading and survival. Cancer 88:2464–2470. doi:10.1002/1097-0142(20000601)88:11<2464:AID-CNCR6>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  23. Yang F, Yin Y, Wang F, Wang Y, Zhang L, Tang Y, Sun S (2010) miR-17-5p Promotes migration of human hepatocellular carcinoma cells through the p38 mitogen-activated protein kinase-heat shock protein 27 pathway. Hepatology 51:1614–1623. doi:10.1002/hep.23566

    Article  PubMed  CAS  Google Scholar 

  24. Golembieski WA, Thomas SL, Schultz CR, Yunker CK, McClung HM, Lemke N, Cazacu S, Barker T, Sage EH, Brodie C, Rempel SA (2008) HSP27 mediates SPARC-induced changes in glioma morphology, migration, and invasion. Glia 56:1061–1075. doi:10.1002/glia.20679

    Article  PubMed  Google Scholar 

  25. Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA (2012) Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 11:20. doi:10.1186/1476-4598-11-20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Bruce D. Hammock for providing the sEH inhibitor t-AUCB. This study was supported by research fund from Chinese Ministry of Health (No. WKJ20052031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Hu, W. & Lan, Q. The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of Hsp27. J Neurooncol 110, 187–194 (2012). https://doi.org/10.1007/s11060-012-0963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0963-8

Keywords

Navigation