Skip to main content
Log in

The differential diagnosis of pilocytic astrocytoma with atypical features and malignant glioma: an analysis of 16 cases with emphasis on distinguishing molecular features

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Rare pilocytic astrocytomas (PA) have atypical histologic and clinicoradiologic features that raise the differential diagnosis of glioblastoma. Whether ancillary studies can supplement histopathologic examination in placing these cases accurately on the spectrum of WHO Grade I PA to higher-grade glioma is not always clear, partly because these cases are not common. Here, ten PAs with atypical clinicoradiologic and histologic features and six pediatric glioblastoma multiforme (pGBMs) were analyzed for BRAF V600E, IDH1, IDH2, and TP53 mutations. Ki-67, p53, and p16 protein expression were also examined by immunohistochemistry. BRAF–KIAA1549 fusion status was assessed in the PA subgroup. The rate of BRAFKIAA1549 fusion was high in these PAs (5/7 tumors) including four extracerebellar examples. A single BRAF V600E mutation was identified in the fusion-negative extracerebellar PA of a very young child who succumbed to the disease. TP53 mutations were present only in malignant gliomas, including three pGBMs and one case designated as PA with anaplastic features (with consultation opinion of pGBM). IDH1 and IDH2 were wild type in all cases, consistent with earlier findings that IDH mutations are not typical in high-grade gliomas of patients ≤14 years of age. Immunohistochemical studies showed substantial overlap in Ki-67 labeling indices, an imperfect correlation between p53 labeling and TP53 mutation status, and complete p16 loss in only two pGBMs but in no PAs. These results suggest that (a) BRAFKIAA1549 fusion may be common in PAs with atypical clinicoradiologic and histologic features, including those at extracerebellar sites, (b) BRAF V600E mutation is uncommon in extracerebellar PAs, and (c) TP53 mutation analysis remains a valuable tool in identifying childhood gliomas that will likely behave in a malignant fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Burger PC, Scheithauer BW, Vogel FS (2002) Surgical pathology of the nervous system and its coverings, 4th edn. Churchill Livingstone, New York

    Google Scholar 

  2. Jones DT, Gronych J, Lichter P, Witt O, Pfister SM (2012) MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 69(11):1799–1811. doi:10.1007/s00018-011-0898-9

    Article  PubMed  CAS  Google Scholar 

  3. Rodriguez FJ, Scheithauer BW, Burger PC, Jenkins S, Giannini C (2010) Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 34(2):147–160. doi:10.1097/PAS.0b013e3181c75238

    Article  PubMed  Google Scholar 

  4. Perry A, Brat DJ (2010) Practical surgical neuropathology: a diagnostic approach. Churchill Livingstone, Philadelphia

    Google Scholar 

  5. Pollack IF, Hamilton RL, Finkelstein SD, Campbell JW, Martinez AJ, Sherwin RN, Bozik ME, Gollin SM (1997) The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res 57(2):304–309

    PubMed  CAS  Google Scholar 

  6. Lin A, Rodriguez FJ, Karajannis MA, Williams SC, Legault G, Zagzag D, Burger PC, Allen JC, Eberhart CG, Bar EE (2012) BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 71(1):66–72. doi:10.1097/NEN.0b013e31823f2cb0

    Article  PubMed  CAS  Google Scholar 

  7. Schindler G, Capper D, Meyer J, Janzarik W, Omran H, Herold-Mende C, Schmieder K, Wesseling P, Mawrin C, Hasselblatt M, Louis DN, Korshunov A, Pfister S, Hartmann C, Paulus W, Reifenberger G, von Deimling A (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121(3):397–405. doi:10.1007/s00401-011-0802-6

    Article  PubMed  CAS  Google Scholar 

  8. Horbinski C, Hamilton RL, Nikiforov Y, Pollack IF (2010) Association of molecular alterations, including BRAF, with biology and outcome in pilocytic astrocytomas. Acta Neuropathol 119(5):641–649. doi:10.1007/s00401-009-0634-9

    Article  PubMed  CAS  Google Scholar 

  9. Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K, Delattre JY (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27(25):4150–4154. doi:10.1200/JCO.2009.21.9832

    Article  PubMed  CAS  Google Scholar 

  10. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773. doi:10.1056/NEJMoa0808710

    Article  PubMed  CAS  Google Scholar 

  11. Pollack IF, Hamilton RL, Sobol RW, Nikiforova MN, Lyons-Weiler MA, Laframboise WA, Burger PC, Brat DJ, Rosenblum MK, Holmes EJ, Zhou T, Jakacki RI (2011) IDH1 mutations are common in malignant gliomas arising in adolescents: a report from the Children’s Oncology Group. Childs Nerv Syst 27(1):87–94. doi:10.1007/s00381-010-1264-1

    Article  PubMed  Google Scholar 

  12. Tuominen VJ, Ruotoistenmaki S, Viitanen A, Jumppanen M, Isola J (2010) ImmunoRatio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res 12(4):R56. doi:10.1186/bcr2615

    Article  PubMed  Google Scholar 

  13. Raabe EH, Lim KS, Kim JM, Meeker A, Mao XG, Nikkhah G, Maciaczyk J, Kahlert U, Jain D, Bar E, Cohen KJ, Eberhart CG (2011) BRAF activation induces transformation and then senescence in human neural stem cells: a pilocytic astrocytoma model. Clin Cancer Res 17(11):3590–3599. doi:10.1158/1078-0432.CCR-10-3349

    Article  PubMed  CAS  Google Scholar 

  14. Cykowski MD, Allen RA, Fung K-M, Harmon MA, Dunn ST (2012) Pyrosequencing of IDH1 and IDH2 mutations in brain tumors and non-neoplastic conditions. Diagn Mol Pathol 21:214–220

    Article  PubMed  CAS  Google Scholar 

  15. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, Menzies A, Teague JW, Campbell PJ, Stratton MR, Futreal PA (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39((Database issue)):D945–D950. doi:10.1093/nar/gkq929

    Article  PubMed  CAS  Google Scholar 

  16. Kim YH, Nonoguchi N, Paulus W, Brokinkel B, Keyvani K, Sure U, Wrede K, Mariani L, Giangaspero F, Tanaka Y, Nakazato Y, Vital A, Mittelbronn M, Perry A, Ohgaki H (2012) Frequent BRAF gain in low-grade diffuse gliomas with 1p/19q loss. Brain Pathol 22(6):834–840. doi:10.1111/j.1750-3639.2012.00601.x

    Article  PubMed  CAS  Google Scholar 

  17. Tibbetts KM, Emnett RJ, Gao F, Perry A, Gutmann DH, Leonard JR (2009) Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 117(6):657–665. doi:10.1007/s00401-009-0506-3

    Article  PubMed  CAS  Google Scholar 

  18. Korshunov A, Meyer J, Capper D, Christians A, Remke M, Witt H, Pfister S, von Deimling A, Hartmann C (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118(3):401–405. doi:10.1007/s00401-009-0550-z

    Article  PubMed  CAS  Google Scholar 

  19. Jones DT, Kocialkowski S, Liu L, Pearson DM, Backlund LM, Ichimura K, Collins VP (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68(21):8673–8677. doi:10.1158/0008-5472.CAN-08-2097

    Article  PubMed  CAS  Google Scholar 

  20. Tian Y, Rich BE, Vena N, Craig JM, Macconaill LE, Rajaram V, Goldman S, Taha H, Mahmoud M, Ozek M, Sav A, Longtine JA, Lindeman NI, Garraway LA, Ligon AH, Stiles CD, Santagata S, Chan JA, Kieran MW, Ligon KL (2011) Detection of KIAA1549-BRAF fusion transcripts in formalin-fixed paraffin-embedded pediatric low-grade gliomas. J Mol Diagn 13(6):669–677. doi:10.1016/j.jmoldx.2011.07.002

    Article  PubMed  CAS  Google Scholar 

  21. Horbinski C, Nikiforova MN, Hagenkord JM, Hamilton RL, Pollack IF (2012) Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 14(6):777–789. doi:10.1093/neuonc/nos077

    Article  PubMed  CAS  Google Scholar 

  22. Mendelsohn J, Howley PM, Israel MA, Gray JW, Thompson CB (eds) (2008) The molecular basis of cancer, 3rd edn. Elsevier Science, Philadelphia

    Google Scholar 

  23. Hawkins C, Walker E, Mohamed N, Zhang C, Jacob K, Shirinian M, Alon N, Kahn D, Fried I, Scheinemann K, Tsangaris E, Dirks P, Tressler R, Bouffet E, Jabado N, Tabori U (2011) BRAF–KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res 17(14):4790–4798. doi:10.1158/1078-0432.CCR-11-0034

    Article  PubMed  CAS  Google Scholar 

  24. Kandala G, Bannykh S, Fan S, Baden K, Pau A, Baden L, Fournier P, Thorpe E, Porpora K, Mirocha J, Kawachi K, Riley-Portuges A, Lopategui J (2012) Pilocytic astrocytomas with infiltrating patterns of growth carry a high rate of BRAF V600E mutation. Paper presented at the Modern Pathology

  25. Lang FF, Miller DC, Pisharody S, Koslow M, Newcomb EW (1994) High frequency of p53 protein accumulation without p53 gene mutation in human juvenile pilocytic, low grade and anaplastic astrocytomas. Oncogene 9(3):949–954

    PubMed  CAS  Google Scholar 

  26. Patt S, Gries H, Giraldo M, Cervos-Navarro J, Martin H, Janisch W, Brockmoller J (1996) p53 gene mutations in human astrocytic brain tumors including pilocytic astrocytomas. Hum Pathol 27(6):586–589

    Article  PubMed  CAS  Google Scholar 

  27. Hayes VM, Dirven CM, Dam A, Verlind E, Molenaar WM, Mooij JJ, Hofstra RM, Buys CH (1999) High frequency of TP53 mutations in juvenile pilocytic astrocytomas indicates role of TP53 in the development of these tumors. Brain Pathol 9(3):463–467

    Article  PubMed  CAS  Google Scholar 

  28. Scheithauer BW, Hawkins C, Tihan T, VandenBerg SR, Burger PC (2007) Pilocytic astrocytoma. In: Louis D, Ohgaki H, Wiestler O, Cavenee W (eds) WHO classification of tumours of the central nervous system, 4th edn. WHO Press, Geneva, p 309

    Google Scholar 

  29. Ishii N, Sawamura Y, Tada M, Daub DM, Janzer RC, Meagher-Villemure M, de Tribolet N, Van Meir EG (1998) Absence of p53 gene mutations in a tumor panel representative of pilocytic astrocytoma diversity using a p53 functional assay. Int J Cancer 76(6):797–800

    Article  PubMed  CAS  Google Scholar 

  30. Jha P, Suri V, Singh G, Purkait S, Pathak P, Sharma V, Sharma MC, Suri A, Gupta D, Mahapatra AK, Sarkar C (2011) Characterization of molecular genetic alterations in GBMs highlights a distinctive molecular profile in young adults. Diagn Mol Pathol 20(4):225–232. doi:10.1097/PDM.0b013e31821c30bc

    Article  PubMed  CAS  Google Scholar 

  31. Frank AJ, Hernan R, Hollander A, Lindsey JC, Lusher ME, Fuller CE, Clifford SC, Gilbertson RJ (2004) The TP53-ARF tumor suppressor pathway is frequently disrupted in large/cell anaplastic medulloblastoma. Brain Res Mol Brain Res 121(1–2):137–140. doi:10.1016/j.molbrainres.2003.11.016

    Article  PubMed  CAS  Google Scholar 

  32. Kosel S, Scheithauer BW, Graeber MB (2001) Genotype-phenotype correlation in gemistocytic astrocytomas. Neurosurgery 48(1):187–193 discussion 193–184

    Article  PubMed  CAS  Google Scholar 

  33. Kleihues P, Burger PC, Aldape KD, Brat DJ, Biernat W, Bigner DD, Nakazato Y, Plate Y, Giangaspero F, von Deimling A, Ohgaki H, Cavenee W (2007) Glioblastoma. In: Louis D, Ohgaki H, Wiestler O, Cavenee W (eds) WHO classification of tumours of the central nervous system, 4th edn. WHO Press, Geneva, p 309

    Google Scholar 

  34. Camelo-Piragua S, Jansen M, Ganguly A, Kim JC, Cosper AK, Dias-Santagata D, Nutt CL, Iafrate AJ, Louis DN (2011) A sensitive and specific diagnostic panel to distinguish diffuse astrocytoma from astrocytosis: chromosome 7 gain with mutant isocitrate dehydrogenase 1 and p53. J Neuropathol Exp Neurol 70(2):110–115. doi:10.1097/NEN.0b013e31820565f9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the OUHSC Department of Pathology.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Terence Dunn.

Additional information

This study was presented at the 101st meeting of the United States and Canadian Academy of Pathology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cykowski, M.D., Allen, R.A., Kanaly, A.C. et al. The differential diagnosis of pilocytic astrocytoma with atypical features and malignant glioma: an analysis of 16 cases with emphasis on distinguishing molecular features. J Neurooncol 115, 477–486 (2013). https://doi.org/10.1007/s11060-013-1249-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1249-5

Keywords

Navigation