Skip to main content

Advertisement

Log in

Correlation between the prognostic value and the expression of the stem cell marker CD133 and isocitrate dehydrogenase1 in glioblastomas

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Cancer stem cells are thought to be responsible for tumor recurrence and resistance in glioblastomas. An isocitrate dehydrogenase1 (IDH1) mutation, affecting codon132 of the isocitrate dehydrogenase1 gene, has prognostic significance in glioblastomas. We investigated whether stem cell marker expression [CD133, CD34, and vascular endothelial growth factor (VEGF)] and IDH1 mutation correlate with clinical factors and prognosis in glioblastoma. CD133, CD34, and VEGF expression was evaluated by immunohistochemistry in 67 cases of glioblastoma identified between 2005 and 2012. IDH1 mutation was assessed by immunohistochemistry, peptide-nucleic-acid mediated PCR clamping, and direct gene sequencing. Diffuse CD133 expression was detected in 12 (17.9 %) cases and was associated with poor overall survival (OS) (P = 0.010) and progression-free survival (P = 0.017). CD34 and VEGF expression were not associated with prognosis in these samples. IDH1 mutation was detected in ten (14.9 %) cases. Eight were clinically secondary tumors and two were primary tumors (P < 0.001); the mean age of the secondary tumor patients was significantly younger (P = 0.001, 41.20 vs. 59.14). IDH1-positive patients had longer OS than IDH1-negative patients (25.78 vs. 22.95 months), but this difference was not significant. In addition, IDH1 and CD34 expression showed a negative correlation (P = 0.024). Multivariate analysis showed that age, extent of surgery, and diffuse CD133 expression correlated with OS. CD133 may be a survival marker for glioblastoma. Further characterization of CD133, IDH1, and vascular markers in glioblastoma may help identify new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Park DM, Rich JN (2009) Biology of glioma cancer cells. Mol Cells 28:7–12

    Article  PubMed  CAS  Google Scholar 

  2. Bao S, Wu Q, McLendon RE, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  3. Brescia P, Richichi C, Pelicci G (2012) Current strategies for identification of glioma stem cells: adequate or unsatisfactory? J Oncol. doi:10.1155/2012/376894

    PubMed  Google Scholar 

  4. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  5. Zeppernick F, Ahmadi R, Campos B, Dictus C, Helmke BM, Becker N, Lichter P, Unterberg A, Radlwimmer B, Herold-Mende CC (2008) Stem cell marker CD133 affects clinical outcome in glioma patients. Clin Cancer Res 14:123–129

    Article  PubMed  CAS  Google Scholar 

  6. Pallini R, Ricci-Vitiani L, Banna GL, Signore M, Lombardi D, Todaro M, Stassi G, Martini M, Maira G, Larocca LM, Maria RD (2008) Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res 14:8205–8212

    Article  PubMed  CAS  Google Scholar 

  7. Thon N, Damianoff K, Hegermann J, Gras S, Krebs B, Schnell O, Tonn JC, Goldbrunner R (2010) Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol Cell Neurosci 43:51–59

    Article  PubMed  CAS  Google Scholar 

  8. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca LM, Peschle C, Maria RD (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13:1238–1241

    Article  PubMed  CAS  Google Scholar 

  9. He H, Niu CS, Li MY (2012) Correlation between glioblastoma stem-like cells and tumor vascularization. Oncol Rep 27:45–50

    PubMed  Google Scholar 

  10. Garcia JL, Perez-Caro M, Gomez-Moreta JA, Gonzalez F, Ortiz J, Blanco O, Sancho M, Hernandez-Rivas JM, Gonzalez-Sarmiento R, Sanchez-Martin M (2010) Molecular analysis of ex vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC Cancer 10:454–469

    Article  PubMed  Google Scholar 

  11. Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  PubMed  CAS  Google Scholar 

  12. Fischer I, Cunliffe CH, Bollo RJ, Raza BS, Monoky D, Chiriboga L, Parker EC, Golfinos JG, Kelly PJ, Knopp EA, Gruber ML, Zagzag D, Narayana A (2008) High-grade glioma before and after treatment with radiation and Avastin: initial observations. Neuro-Oncology 10:700–708

    Article  PubMed  Google Scholar 

  13. Takano S, Tian W, Matsuda M, Yamamoto T, Ishikawa E, Kaneko MK, Uamazaki K, Kato Y, Matsumura A (2011) Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 28:115–123

    Article  PubMed  CAS  Google Scholar 

  14. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Eolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Lowenberg B, Licht JD, Godley LA, Delwel R, Valk PJM, Thompson CB, Levine RL, Melnick A (2010) Leukemic IDH1 and IDH2 Mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567

    Article  PubMed  CAS  Google Scholar 

  15. Wu Y, Wu PY (2009) CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev 18:1127–1134

    Article  PubMed  CAS  Google Scholar 

  16. Pallini R, Ricci-Vitiani L, Montano N, Mollinari C, Biffoni M, Cenci T, Pierconti F, Martini M, Maria RD, Larocca LM (2011) Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer 117:162–174

    Article  PubMed  Google Scholar 

  17. He J, Shan Z, Li L, Liu F, Liu Z, Song M, Zhu H (2011) Expression of glioma stem cell marker CD133 and O6-methylguanine-DNA methyltransferase is associated with resistance to radiotherapy in gliomas. Oncol Reports 26:1305–1313

    CAS  Google Scholar 

  18. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67–78

    Article  PubMed  Google Scholar 

  19. Hermansen SK, Christensen KG, Jensen SS, Kristensen BW (2011) Inconsistent immunohistochemical expression patterns of four different CD133 antibody clones in glioblastoma. J Histochem Cytochem 59:391–407

    Article  PubMed  CAS  Google Scholar 

  20. Metellus P, Nanni-Metellus I, Delfino C, Colin C, Tchogandjian A, Coulibaly B, Fina F, Loundou A, Barrie M, Chinot O, Ouafik L, Figarella-Branger D (2011) Prognostic impact of CD133 mRNA expression in 48 glioblastoma patients treated with concomitant radiotherapy: a prospective patient cohort at a single institution. Ann Surg Oncol 18:2937–2945

    Article  PubMed  Google Scholar 

  21. Yan H, Parsons W, Jin G, McLendon R, Rasheed A, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  22. Rakheja D, Konoplev S, Medeiros LJ, Chen W (2012) IDH mutations in acute myeloid leukemia. Hum Pathol 43:1541–1551

    Google Scholar 

  23. Lee D, Suh YL, Kang SY, Park TI, Jeong JY, Kim SH (2013) IDH1 mutations in oligodendroglial tumors: comparative analysis of direct sequencing, pyrosequencing, immunohistochemistry, Nested PCR and PNA-mediated clamping PCR. Brain Pathol 23:285–293

    Article  PubMed  CAS  Google Scholar 

  24. Kim HJ, Lee KY, Kim YC, Kim KS, Lee SY, Jang TW, Lee MK, Shin KC, Lee GH, Lee JC, Lee JE, Kim SY (2012) Detection and comparison of peptide nucleic acid-mediated real-time polymerase chain reaction clamping and direct gene sequencing for epidermal growth factor receptor mutations in patients with non-small cell lung cancer. Lung Cancer 75:321–325

    Article  PubMed  Google Scholar 

  25. Oh JE, Lim HS, An CH, Jeong EG, Han JY, Lee SH, Yoo NJ (2010) Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes. J Mol Diagn 12:418–424

    Article  PubMed  CAS  Google Scholar 

  26. Metellus P, Colin C, Taieb D, Guedj E, Nanni-Metellus I, Paula AM, Colavolpe C, Fuentes S, Dufour H, Barrie M, Chinot O, Ouafik L, Figarella-Branger D (2011) IDH mutation status impact on in vivo hypoxia biomarkers expression: new insights from a clinical, nuclear imaging and immunohistochemical study in 33 glioma patients. J Neurooncol 105:591–600

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez FJ, Orr BA, Ligon KL, Eberhart CG (2012) Neoplastic cells are a rare component in human glioblastoma microvasculature. Oncotarget 3:98–106

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no financial disclosures, ethical issues, or conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youn Soo Lee or Chang Suk Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, J.H., Lee, Y.S., Hong, YK. et al. Correlation between the prognostic value and the expression of the stem cell marker CD133 and isocitrate dehydrogenase1 in glioblastomas. J Neurooncol 115, 333–341 (2013). https://doi.org/10.1007/s11060-013-1234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1234-z

Keywords

Navigation