Skip to main content

Advertisement

Log in

Recurrent high-grade glioma treated with bevacizumab: prognostic value of MGMT methylation, EGFR status and pretreatment MRI in determining response and survival

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Although bevacizumab represented an important advance in treatment of recurrent high-grade gliomas (HGG), responses occur in fewer than half of patients. There are no validated biomarkers for anti-angiogenic therapy that are available for routine clinical use. We assessed the prognostic values of imaging and molecular markers in this patient population. MRI scans from 191 patients with recurrent HGG obtained prior to initiating bevacizumab were reviewed for areas of enhancement, necrosis, T2/FLAIR abnormality, and ADC values. Serial MRI scans following the initiation of bevacizumab were evaluated for response and progression. Non-radiographic markers including EGFR and MGMT status were also assessed with respect to response and patient survival. 65 of 191 patients (34 %) showed complete or partial response at the time of their best response MRI and demonstrated longer progression free survival (PFS) and overall survival (OS) compared to the group without response (PFS: 6.9 vs 3.5 months, OS: 10.9 vs 6.1 months). Minimum ADC values within enhancing and non-enhancing regions were lower in responders compared to those of non-responders (1,099 vs 984 × 10−6 mm2/s, p = 0.006). Smaller enhancing area was associated with longer OS (HR = 1.99, p = 0.017). The ratio of T2/FLAIR to enhancing area was prognostic of OS for only the Grade III HGG subgroup (HR = 0.14, p = 0.004). Area of enhancing tumor at baseline can stratify survival in patients with recurrent HGG treated with bevacizumab. The extent of edema relative to enhancing area may have a prognostic role specific to Grade III HGG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62(1):10–29

    Article  PubMed  Google Scholar 

  2. CBTRUS (2012). Statistical report: primary brain tumors in the United States, 2004–2008. Published by the Central Brain Tumor Registry of the United States

  3. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  4. Carson KA, Grossman SA, Fisher JD, Shaw EG (2007) Prognostic factors for survival in adult patients with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS consortium phase I and II clinical trials. J Clin Oncol 25(18):2601–2606

    Article  PubMed  Google Scholar 

  5. Friedman HS, Prados MD, Wen PY et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27(28):4733–4740

    Article  CAS  PubMed  Google Scholar 

  6. Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27(5):740–745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pope WB, Young JR, Ellingson BM (2011) Advances in MRI assessment of gliomas and response to anti-VEGF therapy. Curr Neurol Neurosci Rep 11(3):336–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sathornsumetee S, Cao Y, Marcello JE et al (2008) Tumor angiogenic and hypoxic profiles predict radiographic response and survival in malignant astrocytoma patients treated with bevacizumab and irinotecan. J Clin Oncol 26(2):271–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Pope WB, Qiao XJ, Kim HJ et al (2012) Apparent diffusion coefficient histogram analysis stratifies progression-free and overall survival in patients with recurrent GBM treated with bevacizumab: a multi-center study. J Neurooncol 108(3):491–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Sawlani RN, Raizer J, Horowitz SW et al (2010) Glioblastoma: a method for predicting response to antiangiogenic chemotherapy by using MR perfusion imaging–pilot study. Radiology 255(2):622–628

    Article  PubMed Central  PubMed  Google Scholar 

  11. Najafi M, Soltanian-Zadeh H, Jafari-Khouzani K, Scarpace L, Mikkelsen T (2012) Prediction of glioblastoma multiform response to bevacizumab treatment using multi-parametric MRI. PLoS One 7(1):e29945

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8(7):1277–1280

    CAS  PubMed  Google Scholar 

  13. Wen PY, Macdonald DR, Reardon DA et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972

    Article  PubMed  Google Scholar 

  14. Esteller M, Hamilton SR, Burger PC, Baylin SB, Herman JG (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59(4):793–797

    CAS  PubMed  Google Scholar 

  15. Dorenbeck U, Grunwald IQ, Schlaier J, Feuerbach S (2005) Diffusion-weighted imaging with calculated apparent diffusion coefficient of enhancing extra-axial masses. J neuroimaging 15(4):341–347

    Article  CAS  PubMed  Google Scholar 

  16. Guo AC, Cummings TJ, Dash RC, Provenzale JM (2002) Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 224(1):177–183

    Article  PubMed  Google Scholar 

  17. Rumboldt Z, Camacho DL, Lake D, Welsh CT, Castillo M (2006) Apparent diffusion coefficients for differentiation of cerebellar tumors in children. AJNR Am J Neuroradiol 27(6):1362–1369

    CAS  PubMed  Google Scholar 

  18. Yamasaki F, Kurisu K, Satoh K et al (2005) Apparent diffusion coefficient of human brain tumors at MR imaging. Radiology 235(3):985–991

    Article  PubMed  Google Scholar 

  19. Higano S, Yun X, Kumabe T et al (2006) Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241(3):839–846

    Article  PubMed  Google Scholar 

  20. Kitis O, Altay H, Calli C, Yunten N, Akalin T, Yurtseven T (2005) Minimum apparent diffusion coefficients in the evaluation of brain tumors. Eur J Radiol 55(3):393–400

    Article  PubMed  Google Scholar 

  21. Murakami R, Hirai T, Sugahara T et al (2009) Grading astrocytic tumors by using apparent diffusion coefficient parameters: superiority of a one-versus two-parameter pilot method. Radiology 251(3):838–845

    Article  PubMed  Google Scholar 

  22. Sugahara T, Korogi Y, Kochi M et al (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9(1):53–60

    Article  CAS  PubMed  Google Scholar 

  23. Crawford FW, Khayal IS, McGue C et al (2009) Relationship of pre-surgery metabolic and physiological MR imaging parameters to survival for patients with untreated GBM. J Neurooncol 91(3):337–351

    Article  PubMed Central  PubMed  Google Scholar 

  24. Saraswathy S, Crawford FW, Lamborn KR et al (2009) Evaluation of MR markers that predict survival in patients with newly diagnosed GBM prior to adjuvant therapy. J Neurooncol 91(1):69–81

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pope WB, Kim HJ, Huo J et al (2009) Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 252(1):182–189

    Article  PubMed  Google Scholar 

  26. Jain R, Scarpace LM, Ellika S et al (2010) Imaging response criteria for recurrent gliomas treated with bevacizumab: role of diffusion weighted imaging as an imaging biomarker. J Neurooncol 96(3):423–431

    Article  CAS  PubMed  Google Scholar 

  27. Mong S, Ellingson BM, Nghiemphu PL et al (2012) Persistent diffusion-restricted lesions in bevacizumab-treated malignant gliomas are associated with improved survival compared with matched controls. AJNR Am J Neuroradiol 33(9):1763–1770

    Article  CAS  PubMed  Google Scholar 

  28. Gerstner ER, Frosch MP, Batchelor TT (2010) Diffusion magnetic resonance imaging detects pathologically confirmed, nonenhancing tumor progression in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol 28(6):e91–e93

    Article  PubMed  Google Scholar 

  29. Rieger J, Bahr O, Muller K, Franz K, Steinbach J, Hattingen E (2010) Bevacizumab-induced diffusion-restricted lesions in malignant glioma patients. J Neurooncol 99(1):49–56

    Article  CAS  PubMed  Google Scholar 

  30. Gorlia T, Stupp R, Brandes AA et al (2012) New prognostic factors and calculators for outcome prediction in patients with recurrent glioblastoma: a pooled analysis of EORTC Brain Tumour Group phase I and II clinical trials. Eur J Cancer 48(8):1176–1184

    Article  PubMed  Google Scholar 

  31. Batchelor TT, Sorensen AG, di Tomaso E et al (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1):83–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Pope WB, Lai A, Nghiemphu P, Mischel P, Cloughesy TF (2006) MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66(8):1258–1260

    Article  CAS  PubMed  Google Scholar 

  33. Prados M, Cloughesy T, Samant M et al (2011) Response as a predictor of survival in patients with recurrent glioblastoma treated with bevacizumab. Neuro Oncol 13(1):143–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Norden AD, Young GS, Setayesh K et al (2008) Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 70(10):779–787

    Article  CAS  PubMed  Google Scholar 

  35. Gallego Perez-Larraya J, Lahutte M, Petrirena G et al (2012) Response assessment in recurrent glioblastoma treated with irinotecan-bevacizumab: comparative analysis of the Macdonald, RECIST, RANO, and RECIST+F criteria. Neuro Oncol 14(5):667–673

    Article  PubMed  Google Scholar 

  36. Kamoun WS, Ley CD, Farrar CT et al (2009) Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol 27(15):2542–2552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by institutional funds.

Conflict of interest

Dr. Wen discloses that he serves on the Genentech advisory board. Other authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Norden.

Additional information

Christina Chen and Raymond Huang contributed equally to this project and should be considered co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, C., Huang, R., MacLean, A. et al. Recurrent high-grade glioma treated with bevacizumab: prognostic value of MGMT methylation, EGFR status and pretreatment MRI in determining response and survival. J Neurooncol 115, 267–276 (2013). https://doi.org/10.1007/s11060-013-1225-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1225-0

Keywords

Navigation