Skip to main content

Advertisement

Log in

Down-regulation of miR-106b suppresses the growth of human glioma cells

  • Laboratory Investigation
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Recently, many studies have found that the miR-106b ~25 cluster plays an oncogenic role in tumor progression. However, the precise role of each microRNAs (miRNAs) in the cluster is not yet clear. In the present study, we examined the expression of miR-106b in glioma samples and a tissue microarray by real-time PCR and in situ hybridization (ISH), respectively, finding that miR-106b is overexpressed in the majority of gliomas. Meanwhile, the expression of miR-106b was positively correlated with tumor grade (p < 0.05). The transfection of a miR-106b anti-sense oligonucleotide (ASON) into three human glioma cell lines (U251, LN229 and TJ905) suppressed the proliferation of these cells. Moreover, the growth of xenograft tumors in nude mice treated with miR-106b ASON was significantly impaired. A bioinformatics analysis predicted that RBL2 may be the target of miR-106b, and dual-luciferase reporter assays identified RBL2, but not RB1 or RBL1, as a target of miR-106b. These results suggest that miR-106b facilitates glioma cell growth by promoting cell cycle progression through the negative regulation of RBL2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J et al (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  Google Scholar 

  2. Ferlay J, Bray F, Pisani P, Parkin DM (2004) GLOBOCAN 2002: Cancer incidence, mortality and prevalence worldwide, Version 2.0. IARC CancerBase No. 5. IARC, Lyon

    Google Scholar 

  3. Tran B, Rosenthal MA (2010) Survival comparison between glioblastoma multiforme and other incurable cancers. J Clin Neurosci 17(4):417–421

    Article  CAS  Google Scholar 

  4. Lawler S, Chiocca EA (2009) Emerging functions of microRNAs in glioblastoma. J Neurooncol 92(3):297–306

    Article  CAS  Google Scholar 

  5. Griffiths-Jones S, Saini HK, van Dongen S et al (2008) MiRBase: tools for microRNA genomics. Nucleic Acids Res 36:154–158

    Article  Google Scholar 

  6. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004

    Article  CAS  Google Scholar 

  7. Hummel R, Maurer J, Haier J (2011) Clinical role of MiRNAs in different brain tumors. Tumors Central Nerv Syst 3(2):185–192

    Google Scholar 

  8. Petrocca F, Visone R, Onelli MR et al (2008) E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13:272–286

    Article  CAS  Google Scholar 

  9. Ventura A, Young AG, Winslow MM et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886

    Article  CAS  Google Scholar 

  10. Koralov SB, Muljo SA, Galler GR et al (2008) Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132:860–874

    Article  CAS  Google Scholar 

  11. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  12. Zhang C, Kang C, You Y et al (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34:1653–1660

    Article  CAS  Google Scholar 

  13. Hui AB, Lenarduzzi M, Krushel T et al (2010) Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res 16(4):1129–1139

    Article  CAS  Google Scholar 

  14. Chen Y, Liu W, Chao T et al (2008) MicroRNA-21 down-regulates the expression of tumor suppressor PDCD4 in human glioblastoma cell T98G. Cancer Lett 272:197–205

    Article  CAS  Google Scholar 

  15. Zhang Y, Chao T, Li R et al (2009) MicroRNA- 128 inhibits glioma cells proliferation by targeting transcription factor E2F3a. J Mol Med 87:43–51

    Article  CAS  Google Scholar 

  16. Ciafrè SA, Galardi S, Mangiola A et al (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334:1351–1358

    Article  Google Scholar 

  17. Zhou X, Ren Y, Moore L et al (2010) Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest 90:144–155

    Article  CAS  Google Scholar 

  18. Zhang C, Kang CS, You Y et al (2009) Co-suppression of miR-221/222 cluster suppresses human glioma cell growth by targeting p27kip1 in vitro and in vivo. Int J Oncol 34(6):1653–1660

    CAS  PubMed  Google Scholar 

  19. Nan Y, Han L, Zhang A et al (2010) MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res 4(1359):14–21

    Article  Google Scholar 

  20. Wang YX, Zhang XY, Zhang BF et al (2010) Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J Dig Dis 11(1):50–54

    Article  Google Scholar 

  21. Liu W, Gong YH, Chao TF et al (2009) Identification of differentially expressed microRNAs by microarray: a possible role for microRNAs gene in medulloblastomas. Chin Med J (Engl) 122(20):2405–2411

    CAS  Google Scholar 

  22. Kan T, Meltzer SJ (2009) MicroRNAs in Barrett’s esophagus and esophageal adenocarcinoma. Curr Opin Pharmacol 9(6):727–732

    Article  CAS  Google Scholar 

  23. Rao SA, Santosh V, Somasundaram K (2010) Genome-wide expression profiling identifies deregulated miRNAs in malignant astrocytoma. Mod Pathol 10:1404–1417

    Article  Google Scholar 

  24. Schraivogel D, Weinmann L, Beier D et al (2011) CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J 30(20):4309–4322

    Article  CAS  Google Scholar 

  25. Ivanovska I, Ball AS, Diaz RL et al (2008) MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 4:2167–2174

    Article  Google Scholar 

  26. Park KM, Kim DJ, Paik SG et al (2006) Role of E2F1 in endoplasmic reticulum stress signaling. Mol Cells 21(3):356–359

    CAS  PubMed  Google Scholar 

  27. Trompeter HI, Abbad H, Iwaniuk KM et al (2011) MicroRNAs MiR-17, MiR-20a, and MiR-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS ONE 6(1):16138–16150

    Article  Google Scholar 

  28. Sdek P, Zhao P, Wang Y et al (2011) Rb and p130 control cell cycle gene silencing to maintain the postmitotic phenotype in cardiac myocytes. J Cell Biol 194(3):407–423

    Article  CAS  Google Scholar 

  29. Kheirollahi M, Mehr-Azin M, Kamalian N et al (2011) Expression of cyclin D2, P53, Rb and ATM cell cycle genes in brain tumors. Med Oncol 28(1):7–14

    Article  CAS  Google Scholar 

  30. Haller F, Löbke C, Ruschhaupt M et al (2008) Loss of 9p leads to p16INK4A down-regulation and enables RB/E2F1-dependent cell cycle promotion in gastrointestinal stromal tumours (GISTs). J Pathol 215(3):253–262

    Article  CAS  Google Scholar 

  31. Cobrinik D (2005) Pocket proteins and cell cycle control. Oncogene 24:2796–2809

    Article  CAS  Google Scholar 

  32. Araki K, Nakajima Y, Eto K et al (2003) Distinct recruitment of E2F family members to specific E2F-binding sites mediates activation and repression of the E2F1 promoter. Oncogene 22:7632–7641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The China National Natural Scientific Fund (81101915), The Project of Tianjin Applied Basic and Cutting-edge Technological Research (12JCQNJC06900), and The Tianjin Health Department Scientific and Technological Fund (2011KZ109).

Conflict of interest

We confirm that there are no known conflicts of interest associated with this publication and that there has been no significant financial support for this work that could have influenced its outcome. We also confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyu Pu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, A., Hao, J., Wang, K. et al. Down-regulation of miR-106b suppresses the growth of human glioma cells. J Neurooncol 112, 179–189 (2013). https://doi.org/10.1007/s11060-013-1061-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-013-1061-2

Keywords

Navigation