Skip to main content

Advertisement

Log in

[18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the predictive value of [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) in detecting malignant transformation of plexiform neurofibromas in children with neurofibromatosis type 1 (NF1). An electronic search of the medical records was performed to determine patients with NF1 who had undergone FDG-PET for plexiform neurofibroma between 2000 and 2011. All clinical, radiologic, pathology information and operative reports were reviewed. Relationship between histologic diagnosis, radiologic features and FDG-PET maximum standardized uptake value (SUVmax) was evaluated. This study was approved by the Institutional Review Board of our institution. 1,450 individual patients were evaluated in our Multidisciplinary Neurofibromatosis Program, of whom 35 patients underwent FDG-PET for suspected MPNST based on change or progression of clinical symptoms, or MRI findings suggesting increased tumor size. Twenty patients had concurrent pathologic specimens from biopsy/excision of 27 distinct lesions (mean age 14.9 years). Pathologic interpretation of these specimens revealed plexiform and atypical plexiform neurofibromas (n = 8 each), low grade MPNST (n = 2), intermediate grade MPNST (n = 4), high grade MPNST (n = 2), GIST (n = 1) and non-ossifying fibroma (n = 1). SUVmax of plexiform neurofibromas (including typical and atypical) was significantly different from MPNST (2.49 (SD = 1.50) vs. 7.63 (SD = 2.96), p < 0.001). A cutoff SUVmax value of 4.0 had high sensitivity and specificity of 1.0 and 0.94 to distinguish between PN and MPNST. FDG-PET can be helpful in predicting malignant transformation in children with plexiform neurofibromas and determining the need for biopsy and/or surgical resection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Listernick R, Charrow J (1990) Neurofibromatosis type 1 in childhood. J Pediatr 116:845–853

    Article  PubMed  CAS  Google Scholar 

  2. National Institutes of Health Concensus Development Conference Statement: neurofibromatosis (1988) Neurofibromatosis 1:172–178

    Google Scholar 

  3. Widemann BC (2009) Current status of sporadic and neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Curr Oncol Rep 11:322–328

    Article  PubMed  Google Scholar 

  4. Brems H, Beert E, de Ravel T, Legius E (2009) Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 10:508–515

    Article  PubMed  CAS  Google Scholar 

  5. Gottfried ON, Viskochil DH, Couldwell WT (2010) Neurofibromatosis type 1 and tumorigenesis: molecular mechanisms and therapeutic implications. Neurosurg Focus 28:E8

    Article  PubMed  Google Scholar 

  6. Tucker T, Wolkenstein P, Revuz J, Zeller J, Friedman JM (2005) Association between benign and malignant peripheral nerve sheath tumors in NF1. Neurology 65:205–211

    Article  PubMed  CAS  Google Scholar 

  7. Ferner RE, Gutmann DH (2002) International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 62:1573–1577

    PubMed  CAS  Google Scholar 

  8. Hoh CK, Hawkins RA, Glaspy JA, Dahlbom M, Tse NY, Hoffman EJ, Schiepers C, Choi Y, Rege S, Nitzsche E et al (1993) Cancer detection with whole-body PET using 2-[18F] fluoro-2-deoxy-d-glucose. J Comput Assist Tomogr 17:582–589

    Article  PubMed  CAS  Google Scholar 

  9. Wong TZ, van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615–626

    Article  PubMed  Google Scholar 

  10. Cardona S, Schwarzbach M, Hinz U, Dimitrakopoulou-Strauss A, Attigah N (2003) Mechtersheimer section sign G, Lehnert T: evaluation of F18-deoxyglucose positron emission tomography (FDG-PET) to assess the nature of neurogenic tumours. Eur J Surg Oncol 29:536–541

    PubMed  CAS  Google Scholar 

  11. Fisher MJ, Basu S, Dombi E, Yu JQ, Widemann BC, Pollock AN, Cnaan A, Zhuang H, Phillips PC, Alavi A (2008) The role of [18F]-fluorodeoxyglucose positron emission tomography in predicting plexiform neurofibroma progression. J Neurooncol 87:165–171

    Article  PubMed  Google Scholar 

  12. Brenner W, Friedrich RE, Gawad KA, Hagel C, von Deimling A, de Wit M, Buchert R, Clausen M, Mautner VF (2006) Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol Imaging 33:428–432

    Article  PubMed  Google Scholar 

  13. Ferner RE, Golding JF, Smith M, Calonje E, Jan W, Sanjayanathan V, O’Doherty M (2008) [18F]2-fluoro-2-deoxy-d-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol 19:390–394

    Article  PubMed  CAS  Google Scholar 

  14. Valeyrie-Allanore L, Ortonne N, Lantieri L, Ferkal S, Wechsler J, Bagot M, Wolkenstein P (2008) Histopathologically dysplastic neurofibromas in neurofibromatosis 1: diagnostic criteria, prevalence and clinical significance. Br J Dermatol 158:1008–1012

    Article  PubMed  CAS  Google Scholar 

  15. Lin BT, Weiss LM, Medeiros LJ (1997) Neurofibroma and cellular neurofibroma with atypia: a report of 14 tumors. Am J Surg Pathol 21:1443–1449

    Article  PubMed  CAS  Google Scholar 

  16. van Vliet M, Kliffen M, Krestin GP, van Dijke CF (2009) Soft tissue sarcomas at a glance: clinical, histological, and MR imaging features of malignant extremity soft tissue tumors. Eur Radiol 19:1499–1511

    Article  PubMed  Google Scholar 

  17. Spurlock G, Knight SJ, Thomas N, Kiehl TR, Guha A, Upadhyaya M (2010) Molecular evolution of a neurofibroma to malignant peripheral nerve sheath tumor (MPNST) in an NF1 patient: correlation between histopathological, clinical and molecular findings. J Cancer Res Clin Oncol 136:1869–1880

    Article  PubMed  CAS  Google Scholar 

  18. Matsumine A, Kusuzaki K, Nakamura T, Nakazora S, Niimi R, Matsubara T, Uchida K, Murata T, Kudawara I, Ueda T, Naka N, Araki N, Maeda M, Uchida A (2009) Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol 135:891–900

    Article  PubMed  Google Scholar 

  19. Korf BR (1999) Plexiform neurofibromas. Am J Med Genet 89:31–37

    Article  PubMed  CAS  Google Scholar 

  20. Bredella MA, Torriani M, Hornicek F, Ouellette HA, Plamer WE, Williams Z, Fischman AJ, Plotkin SR (2007) Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol 189:928–935

    Article  PubMed  Google Scholar 

  21. Warbey VS, Ferner RE, Dunn JT, Calonje E, O’Doherty MJ (2009) [18F] FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging 36:751–757

    Article  PubMed  CAS  Google Scholar 

  22. Moharir M, London K, Howman-Giles R, North K (2010) Utility of positron emission tomography for tumour surveillance in children with neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 37:1309–1317

    Article  PubMed  Google Scholar 

  23. Basu S, Nair N (2006) Potential clinical role of FDG-PET in detecting sarcomatous transformation in von Recklinghausen’s disease: a case study and review of the literature. J Neurooncol 80:91–95

    Article  PubMed  Google Scholar 

  24. Karabatsou K, Kiehl TR, Wilson DM, Hendler A, Guha A (2009) Potential role of 18fluorodeoxyglucose-positron emission tomography/computed tomography in differentiating benign neurofibroma from malignant peripheral nerve sheath tumor associated with neurofibromatosis 1. Neurosurgery 65:A160–A170

    Article  PubMed  Google Scholar 

  25. Shahid KR, Amrami KK, Esther RJ, Lowe VJ, Spinner RJ (2011) False-negative fluorine-18 fluorodeoxyglucose positron emission tomography of a malignant peripheral nerve sheath tumor arising from a plexiform neurofibroma in the setting of neurofibromatosis type 1. J Surg Orthop Adv 20:132–135

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Ullrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, L.L., Drubach, L., Fahey, F. et al. [18F]-Fluorodeoxyglucose positron emission tomography in children with neurofibromatosis type 1 and plexiform neurofibromas: correlation with malignant transformation. J Neurooncol 108, 469–475 (2012). https://doi.org/10.1007/s11060-012-0840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0840-5

Keywords

Navigation