Skip to main content

Advertisement

Log in

Comprehensive anatomical and functional imaging in patients with type I neurofibromatosis using simultaneous FDG-PET/MRI

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To demonstrate the clinical use of FDG-PET/MRI for monitoring enlargement and metabolism of plexiform neurofibromas (PNF) in patients with neurofibromatosis type 1 (NF1), in whom the development of a malignant peripheral nerve sheath tumor (MPNST) is often a life limiting event.

Methods

NF1 patients who underwent a simultaneous FDG-PET/MRI examination in our institution from September 2012 to February 2018 were included. Indication was suspicion of malignant transformation of a PNF to MPNST. A maximum of six peripheral nerve lesions per patient were defined as targets. Standardized uptake values (SUV) and apparent diffusion coefficients (ADC) were measured. The presence of target sign and contrast-medium enhancement was visually recorded. Growth rates were estimated comparing prior or follow-up examinations and correlated with FDG uptake and ADC values. The presence of CNS lesions in cerebral T2 weighted images was recorded.

Results

In 28 NF1 patients a total number of 83 peripheral nerve tumors, 75 benign PNFs and eight MPNSTs, were selected as target lesions. The SUVs of MPNSTs were significantly higher than the SUVs of PNF (3.84 ± 3.98 [SUVmean MPNSTs] vs. 1.85 ± 1.03 [SUVmean PNF], P < .01). Similarly, lesion SUVmean-to-liver SUVmean ratios significantly differed between MPNSTs and PNF (3.20 ± 2.70 [MPNSTs] vs. 1.23 ± 0.61 [PNF]; P < .01). For differentiation between still benign PNF and MPNSTs, we defined SUVmax ≥ 2.78 as a significant cut-off value. Growth rate of PNF correlated significantly positively with SUVmean (rs = .41; P = .003). MRI parameters like ADCmean (1.87 ± 0.24 × 10−3 mm2/s [PNF] vs. 1.76 ± 0.11 × 10−3 mm2/s [MPNSTs]; P > .05], contrast medium enhancement (P = .50) and target sign (P = .86) did not differ between groups.

Conclusion

Simultaneous FDG-PET/MRI is a comprehensive imaging modality for monitoring PNF in NF1 patients. The combined acquisition of both morphologic information in MRI and metabolic information in PET enables the correlation of lesion growth rates with metabolic activity and to define SUV thresholds of significance to identify malignant transformation, which is of utmost clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yap YS, et al. The NF1 gene revisited - from bench to bedside. Oncotarget. 2014;5(15):5873–92.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ferner RE, et al. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet. 2007;44(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ducatman BS, et al. Malignant peripheral nerve sheath tumors. A clinicopathologic study of 120 cases. Cancer. 1986;57(10):2006–21.

    Article  CAS  PubMed  Google Scholar 

  4. Evans DG, et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39(5):311–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Combemale P, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One. 2014;9(2):e85954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Canavese F, Krajbich JI. Resection of plexiform neurofibromas in children with neurofibromatosis type 1. J Pediatr Orthop. 2011;31(3):303–11.

    Article  PubMed  Google Scholar 

  7. Wu JS, Hochman MG. Soft-tissue tumors and tumorlike lesions: a systematic imaging approach. Radiology. 2009;253(2):297–316.

    Article  PubMed  Google Scholar 

  8. Piscitelli O, et al. Neurofibromatosis type 1 and cerebellar T2-hyperintensities: the relationship to cognitive functioning. Dev Med Child Neurol. 2012;54(1):49–51.

    Article  PubMed  Google Scholar 

  9. Gayre GS, et al. Long-term visual outcome in patients with anterior visual pathway gliomas. J Neuroophthalmol. 2001;21(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  10. Omuro A, DeAngelis LM. Glioblastoma and other malignant gliomas: a clinical review. JAMA. 2013;310(17):1842–50.

    Article  CAS  PubMed  Google Scholar 

  11. Broski SM, et al. Evaluation of 18F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors. Skelet Radiol. 2016;45(8):1097–105.

    Article  Google Scholar 

  12. Demehri S, et al. Conventional and functional MR imaging of peripheral nerve sheath tumors: initial experience. AJNR Am J Neuroradiol. 2014;35(8):1615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gatidis S, et al. Comprehensive oncologic imaging in infants and preschool children with substantially reduced radiation exposure using combined simultaneous (1)(8)F-Fluorodeoxyglucose positron emission tomography/magnetic resonance imaging: a direct comparison to (1)(8)F-Fluorodeoxyglucose positron emission tomography/computed tomography. Investig Radiol. 2016;51(1):7–14.

    Article  Google Scholar 

  14. Lu-Emerson C, Plotkin SR. The neurofibromatoses. Part 1: NF1. Rev Neurol Dis. 2009;6(2):E47–53.

    PubMed  Google Scholar 

  15. Chawla SC, et al. Estimated cumulative radiation dose from PET/CT in children with malignancies: a 5-year retrospective review. Pediatr Radiol. 2010;40(5):681–6.

    Article  PubMed  Google Scholar 

  16. Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.

    Article  CAS  PubMed  Google Scholar 

  17. Schafer JF, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology. 2014;273(1):220–31.

    Article  PubMed  Google Scholar 

  18. Radiation dose to patients from radiopharmaceuticals (addendum 2 to ICRP publication 53). Ann ICRP. 1998;28(3):1–126. http://www.icrp.org/publication.asp?id=ICRP%20Publication%2080. Accessed 30 Nov 2018.

  19. Vanderhoek M, Perlman SB, Jeraj R. Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med. 2012;53(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  20. Neubauer H, et al. Diagnostic value of diffusion-weighted MRI for tumor characterization, differentiation and monitoring in pediatric patients with neuroblastic tumors. Rofo. 2017;189(7):640–50.

    Article  PubMed  Google Scholar 

  21. Billiet T, et al. Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. Neuroimage Clin. 2014;4:649–58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salamon J, et al. 18F-FDG PET/CT for detection of malignant peripheral nerve sheath tumours in neurofibromatosis type 1: tumour-to-liver ratio is superior to an SUVmax cut-off. Eur Radiol. 2014;24(2):405–12.

    Article  PubMed  Google Scholar 

  23. Derlin T, et al. Comparative effectiveness of 18F-FDG PET/CT versus whole-body MRI for detection of malignant peripheral nerve sheath tumors in neurofibromatosis type 1. Clin Nucl Med. 2013;38(1):e19–25.

    Article  PubMed  Google Scholar 

  24. Van Der Gucht A, et al. Metabolic tumour burden measured by 18F-FDG PET/CT predicts malignant transformation in patients with Neurofibromatosis Type-1. PLoS One. 2016;11(3):e0151809.

    Article  CAS  Google Scholar 

  25. Warbey VS, et al. [18F]FDG PET/CT in the diagnosis of malignant peripheral nerve sheath tumours in neurofibromatosis type-1. Eur J Nucl Med Mol Imaging. 2009;36(5):751–7.

    Article  CAS  PubMed  Google Scholar 

  26. Bredella MA, et al. Value of PET in the assessment of patients with neurofibromatosis type 1. AJR Am J Roentgenol. 2007;189(4):928–35.

    Article  PubMed  Google Scholar 

  27. Ferner RE, et al. [18F]2-fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) as a diagnostic tool for neurofibromatosis 1 (NF1) associated malignant peripheral nerve sheath tumours (MPNSTs): a long-term clinical study. Ann Oncol. 2008;19(2):390–4.

    Article  CAS  PubMed  Google Scholar 

  28. Ferner RE, et al. Evaluation of (18)fluorodeoxyglucose positron emission tomography ((18)FDG PET) in the detection of malignant peripheral nerve sheath tumours arising from within plexiform neurofibromas in neurofibromatosis 1. J Neurol Neurosurg Psychiatry. 2000;68(3):353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chirindel A, et al. 18F-FDG PET/CT qualitative and quantitative evaluation in neurofibromatosis type 1 patients for detection of malignant transformation: comparison of early to delayed imaging with and without liver activity normalization. J Nucl Med. 2015;56(3):379–85.

    Article  PubMed  Google Scholar 

  30. Benz MR, et al. Utilization of positron emission tomography in the management of patients with sarcoma. Curr Opin Oncol. 2009;21(4):345–51.

    Article  PubMed  Google Scholar 

  31. Benz MR, et al. Quantitative F18-fluorodeoxyglucose positron emission tomography accurately characterizes peripheral nerve sheath tumors as malignant or benign. Cancer. 2010;116(2):451–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar V, et al. Variance of SUVs for FDG-PET/CT is greater in clinical practice than under ideal study settings. Clin Nucl Med. 2013;38(3):175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Langen AJ, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med. 2012;53(5):701–8.

    Article  CAS  PubMed  Google Scholar 

  34. Laffon E, et al. Is liver SUV stable over time in (1)(8)F-FDG PET imaging? J Nucl Med Technol. 2011;39(4):258–63.

    Article  PubMed  Google Scholar 

  35. Combemale P, et al. Utility of 18F-FDG PET with a semi-quantitative index in the detection of sarcomatous transformation in patients with neurofibromatosis type 1. PLoS One. 2014. 9(2):e85954.

  36. Nagata S, et al. Diffusion-weighted imaging of soft tissue tumors: usefulness of the apparent diffusion coefficient for differential diagnosis. Radiat Med. 2008;26(5):287–95.

    Article  PubMed  Google Scholar 

  37. Einarsdóttir H, et al. Diffusion-weighted MRI of soft tissue tumours. Eur Radiol. 2004;14(6):959–63.

    Article  PubMed  Google Scholar 

  38. Razek A, et al. Assessment of soft tissue tumours of the extremities with diffusion echoplanar MR imaging. Radiol Med. 2012;117(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  39. Masayuki M, et al. Soft-tissue tumors evaluated by line-scan diffusion-weighted imaging: influence of myxoid matrix on the apparent diffusion coefficient. J Magn Reson Imaging. 2007;25(6):1199–204.

    Article  Google Scholar 

  40. Petscavage-Thomas JM, et al. Soft-tissue myxomatous lesions: review of salient imaging features with pathologic comparison. Radiographics. 2014;34(4):964–80.

    Article  PubMed  Google Scholar 

  41. Rodriguez FJ, et al. Pathology of peripheral nerve sheath tumors: diagnostic overview and update on selected diagnostic problems. Acta Neuropathol. 2012;123(3):295–319.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Feany MB, Anthony DC, Fletcher CD. Nerve sheath tumours with hybrid features of neurofibroma and schwannoma: a conceptual challenge. Histopathology. 1998;32(5):405–10.

    Article  CAS  PubMed  Google Scholar 

  43. Matsumine A, et al. Differentiation between neurofibromas and malignant peripheral nerve sheath tumors in neurofibromatosis 1 evaluated by MRI. J Cancer Res Clin Oncol. 2009;135(7):891–900.

    Article  PubMed  Google Scholar 

  44. Bhargava R, et al. MR imaging differentiation of benign and malignant peripheral nerve sheath tumors: use of the target sign. Pediatr Radiol. 1997;27(2):124–9.

    Article  CAS  PubMed  Google Scholar 

  45. Suh JS, et al. Peripheral (extracranial) nerve tumors: correlation of MR imaging and histologic findings. Radiology. 1992;183(2):341–6.

    Article  CAS  PubMed  Google Scholar 

  46. Lin J, Martel W. Cross-sectional imaging of peripheral nerve sheath tumors: characteristic signs on CT, MR imaging, and sonography. AJR Am J Roentgenol. 2001;176(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  47. Sevick RJ, et al. Evolution of white matter lesions in neurofibromatosis type 1: MR findings. AJR Am J Roentgenol. 1992;159(1):171–5.

    Article  CAS  PubMed  Google Scholar 

  48. Sekine T, et al. Reduction of (18)F-FDG dose in clinical PET/MR imaging by using silicon photomultiplier detectors. Radiology. 2018;286(1):249–59.

    Article  PubMed  Google Scholar 

  49. Taron J, et al. Simultaneous multislice diffusion-weighted imaging in whole-body positron emission tomography/magnetic resonance imaging for multiparametric examination in oncological patients. Eur Radiol. 2018;28(8):3372–83.

    Article  PubMed  Google Scholar 

  50. Kustner T, et al. Self-navigated 4D cartesian imaging of periodic motion in the body trunk using partial k-space compressed sensing. Magn Reson Med. 2017;78(2):632–44.

    Article  PubMed  Google Scholar 

  51. Watson KL, et al. Patterns of recurrence and survival in sporadic, neurofibromatosis type 1-associated, and radiation-associated malignant peripheral nerve sheath tumors. J Neurosurg. 2017;126(1):319–29.

    Article  PubMed  Google Scholar 

  52. Kar M, et al. Malignant peripheral nerve sheath tumors (MPNST)--clinicopathological study and treatment outcome of twenty-four cases. World J Surg Oncol. 2006;4:55.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sekine T, et al. Evaluation of atlas-based attenuation correction for integrated PET/MR in human brain: application of a head atlas and comparison to true CT-based attenuation correction. J Nucl Med. 2016;57(2):215–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Philipp Reinert.

Ethics declarations

Conflict of interest

Benjamin Bender received travel support by Bayer Vital and consultancy fees from Medtronic.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

This retrospective study was approved by our local institutional ethical review board and informed consent was waived (Project Number: 345/2018BO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinert, C.P., Schuhmann, M.U., Bender, B. et al. Comprehensive anatomical and functional imaging in patients with type I neurofibromatosis using simultaneous FDG-PET/MRI. Eur J Nucl Med Mol Imaging 46, 776–787 (2019). https://doi.org/10.1007/s00259-018-4227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4227-5

Keywords

Navigation