Skip to main content

Advertisement

Log in

Magnetic resonance imaging targeting of intracranial glioma xenografts by Resovist-labeled endothelial progenitor cells

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Accumulating evidence suggests that endothelial progenitor cells (EPCs) play a key role in the development and infiltration of gliomas. Thus, it has been considered that EPCs may be good vehicles for delivering anti-angiogenesis genes for tumor therapy. However, limited means of tracking these cells in vivo has restricted the effective evaluation of the curative effects of genetically modified EPCs in gliomas at different stages. The aim of this study was to develop a non-invasive method to monitor the migration of EPCs to gliomas using 1.5-T MR scanning. We successfully labeled EPCs isolated from cord blood with Resovist-PLL without any influence on the biological properties of these cells. After intravenous administration into glioma-bearing nude mice, the labeled EPCs specifically homed to gliomas and could be reliably tracked by 1.5-T MR as early as 1 day after transplantation, causing a signal loss on T2-weighted images. The dark area was detected throughout the entire tumor zone on day 5, and did not develop a ring as previously described. Histological analysis showed the labeled cells were mainly located at the periphery of the tumor where abundant neo-vessels were identified using CD34 staining; this finding indicates that the transplanted cells may be able to differentiate into ECs and become incorporated into glioma neovasculature. These results suggested that Resovist labeling of EPCs is feasible, efficient and safe for MRI tracking, and 1.5-T MR could be a powerful method for in vivo monitoring of EPCs as an anti-angiogenic drug therapy vector targets against glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, Il’yasova D, Kruchko C, McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, Tihan T, Wiemels JL, Wrensch M, Buffler PA (2008) Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer 113:1953–1968

    Article  PubMed  Google Scholar 

  2. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  4. Lebelt A, Dzieciol J, Guzinska-Ustymowicz K, Lemancewicz D, Zimnoch L, Czykier E (2008) Angiogenesis in gliomas. Folia Histochem Cytobiol 46:69–72

    Article  PubMed  Google Scholar 

  5. Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM, Kerbel RS (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69:7243–7251

    Article  PubMed  CAS  Google Scholar 

  6. Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, Heikamp E, McDevitt MR, Scheinberg DA, Benezra R, Mittal V (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev 21:1546–1558

    Article  PubMed  CAS  Google Scholar 

  7. Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11:261–262

    Article  PubMed  CAS  Google Scholar 

  8. Wong ML, Prawira A, Kaye AH, Hovens CM (2009) Tumour angiogenesis: its mechanism and therapeutic implications in malignant gliomas. J Clin Neurosci 16:1119–1130

    Article  PubMed  CAS  Google Scholar 

  9. Zhang JX, Kang CS, Shi L, Zhao P, Liu N, You YP (2010) Use of thymidine kinase gene-modified endothelial progenitor cells as a vector targeting angiogenesis in glioma gene therapy. Oncology 78:94–102

    Article  PubMed  CAS  Google Scholar 

  10. Ferrari N, Glod J, Lee J, Kobiler D, Fine HA (2003) Bone marrow-derived, endothelial progenitor-like cells as angiogenesis-selective gene-targeting vectors. Gene Ther 10:647–656

    Article  PubMed  CAS  Google Scholar 

  11. Bulte JWM (2005) Magnetic nanoparticles as markers for cellular MR imaging. Magn Magn Mater 289:423–427

    Article  CAS  Google Scholar 

  12. Islam T, Josephson L (2009) Current state and future applications of active targeting in malignancies using superparamagnetic iron oxide nanoparticles. Cancer Biomark 5:99–107

    PubMed  CAS  Google Scholar 

  13. Daldrup-Link HE, Rudelius M, Piontek G, Metz S, Brauer R, Debus G, Corot C, Schlegel J, Link TM, Peschel C, Rummeny EJ, Oostendorp RA (2005) Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234:197–205

    Article  PubMed  Google Scholar 

  14. Hinds KA, Hill JM, Shapiro EM, Laukkanen MO, Silva AC, Combs CA, Varney TR, Balaban RS, Koretsky AP, Dunbar CE (2003) Highly efficient endosomal labeling of progenitor and stem cells with large magnetic particles allows magnetic resonance imaging of single cells. Blood 102:867–872

    Article  PubMed  CAS  Google Scholar 

  15. Arbab AS, Pandit SD, Anderson SA, Yocum GT, Bur M, Frenkel V, Khuu HM, Read EJ, Frank JA (2006) Magnetic resonance imaging and confocal microscopy studies of magnetically labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis. Stem Cells 24:671–678

    Article  PubMed  CAS  Google Scholar 

  16. Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198

    Article  PubMed  CAS  Google Scholar 

  17. Argyriou AA, Giannopoulou E, Kalofonos HP (2009) Angiogenesis and anti-angiogenic molecularly targeted therapies in malignant gliomas. Oncology 77:1–11

    Article  PubMed  CAS  Google Scholar 

  18. Zhang HR, Chen FL, Xu CP, Ping YF, Wang QL, Liang ZQ, Wang JM, Bian XW (2009) Incorporation of endothelial progenitor cells into the neovasculature of malignant glioma xenograft. J Neurooncol 93:165–174

    Article  PubMed  Google Scholar 

  19. Yoder MC, Ingram DA (2009) The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim Biophys Acta 1796:50–54

    PubMed  CAS  Google Scholar 

  20. Gao D, Nolan D, McDonnell K, Vahdat L, Benezra R, Altorki N, Mittal V (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumor growth and metastatic progression. Biochim Biophys Acta 1796:33–40

    PubMed  CAS  Google Scholar 

  21. Zelivyanskaya ML, Nelson JA, Poluektova L, Uberti M, Mellon M, Gendelman HE, Boska MD (2003) Tracking superparamagnetic iron oxide labeled monocytes in brain by high-field magnetic resonance imaging. J Neurosci Res 73:284–295

    Article  PubMed  CAS  Google Scholar 

  22. Frank JA, Miller BR, Arbab AS, Zywicke HA, Jordan EK, Lewis BK, Bryant LH Jr, Bulte JW (2003) Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 228:480–487

    Article  PubMed  Google Scholar 

  23. Foster-Gareau P, Heyn C, Alejski A, Rutt BK (2003) Imaging single mammalian cells with a 1.5 T clinical MRI scanner. Magn Reson Med 49:968–971

    Article  PubMed  Google Scholar 

  24. Heyn C, Ronald JA, Mackenzie LT, MacDonald IC, Chambers AF, Rutt BK, Foster PJ (2006) In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magn Reson Med 55:23–29

    Article  PubMed  Google Scholar 

  25. Arbab AS, Yocum GT, Wilson LB, Parwana A, Jordan EK, Kalish H, Frank JA (2004) Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol Imaging 3:24–32

    Article  PubMed  CAS  Google Scholar 

  26. Farrell E, Wielopolski P, Pavljasevic P, van Tiel S, Jahr H, Verhaar J, Weinans H, Krestin G, O’brien FJ, van Osch G, Bernsen M (2008) Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochem Biophys Res Commun 369:1076–1081

    Article  PubMed  CAS  Google Scholar 

  27. Kostura L, Kraitchman DL, Mackay AM, Pittenger MF, Bulte JW (2004) Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed 17:513–517

    Article  PubMed  Google Scholar 

  28. Morreale VM, Herman BH, Der-Minassian V, Palkovits M, Klubes P, Perry D, Csiffary A, Lee AP (1993) A brain-tumor model utilizing stereotactic implantation of a permanent cannula. J Neurosurg 78:959–965

    Article  PubMed  CAS  Google Scholar 

  29. Anderson SA, Glod J, Arbab AS, Noel M, Ashari P, Fine HA, Frank JA (2005) Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105:420–425

    Article  PubMed  CAS  Google Scholar 

  30. Tuettenberg J, Friedel C, Vajkoczy P (2006) Angiogenesis in malignant glioma—a target for antitumor therapy? Crit Rev Oncol Hematol 59:181–193

    Article  PubMed  CAS  Google Scholar 

  31. Conti CJ (2002) Vascular endothelial growth factor: regulation in the mouse skin carcinogenesis model and use in antiangiogenesis cancer therapy. Oncologist 7:4–11

    Article  PubMed  CAS  Google Scholar 

  32. Webb CP, Vande Woude GF (2000) Genes that regulate metastasis and angiogenesis. J Neurooncol 50:71–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Wei Sun and Miss Li-Ting Wang (Central Laboratory, Third Military Medical University, Chongqing, China) for their technical assistance in laser confocal scanning microscopy. We thank Dr. Wangxia Wang from University of Kentucky, USA, for editing this paper. This study was supported by the Foundation for Science & Technology Research Projects of Chongqing, China (NO. CSTC2007AC5014) and the Foundation of the Scientific Research of Third Military Medical University, China (2009XLC29).

Competing interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoxiang Zhang or Weiguo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Fang, J., Zhang, T. et al. Magnetic resonance imaging targeting of intracranial glioma xenografts by Resovist-labeled endothelial progenitor cells. J Neurooncol 105, 67–75 (2011). https://doi.org/10.1007/s11060-011-0569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-011-0569-6

Keywords

Navigation