Skip to main content

Advertisement

Log in

Epo is involved in angiogenesis in human glioma

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

In this study, the extent of angiogenesis, evaluated as microvascular density, and the immunoreactivity of tumor cells to erythropoietin (Epo) and of endothelial cells to Epo receptor (EpoR) have been correlated in human glioma specimens, and the effect of anti-Epo antibody on glioma-induced angiogenesis in vivo in the chick embryo chorioallantoic membrane (CAM) has been investigated. Results show that: (1) Epo/EpoR expression correlates with angiogenesis, (2) in the CAM assay, tumor bioptic specimens induce a strong angiogenic response, comparable to that induced by VEGF, and (3) an anti-Epo antibody co-administered with tumor bioptic specimens significantly inhibits the angiogenic response. These findings suggest the presence of a loop in the Epo/EpoR system, i.e. Epo is secreted by glioma tumor cells and it affects glioma vascular endothelial cells via its receptor and promotes angiogenesis in a paracrine manner. Moreover, as demonstrated by in vivo experiments, Epo is responsible for the strong angiogenic response induced by human glioma bioptic specimens, because an anti-Epo antibody is able to significantly inhibit this response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kleinhues P, Cavenee W (2000) Astrocytic tumors. In: Pathology and genetics of tumors of the nervous system. World Health Organization Classification of Tumours. ISN Neuropath Press, Basel, pp 9–52

  2. Machein MR, Plate KH (2000) VEGF in brain tumors. J Neurooncol 50:109–120

    Article  CAS  PubMed  Google Scholar 

  3. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310

    Article  CAS  PubMed  Google Scholar 

  4. Bernsen HJJA, Rijken PFJW, Peters JPW, Bakker H, van der Kogel A (1998) Delayed vascular changes after antiangiogenic therapy with anti-vascular endothelial growth factor antibodies in human glioma xenografts in nude mice. Neurosurgery 43:570–575

    Article  CAS  PubMed  Google Scholar 

  5. Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2:306–314

    Article  CAS  PubMed  Google Scholar 

  6. Chamberlain MC (2008) Antiangiogenesis: biology and utility in the treatment of gliomas. Expert Rev Neurother 8:1419–1423

    Article  PubMed  Google Scholar 

  7. Brat DJ, Castellano-Sanchez A, Kaur B, Van Meir EG (2002) Genetic and biologic progression in astrocytomas and their relation to angiogenic dysregulation. Adv Anat Pathol 9:24–36

    Article  PubMed  Google Scholar 

  8. Nir I, Kohn S, Doron Y, Israel O, Front D (1986) Quantitative analysis of tight junctions and the uptake of 99mTc in human gliomas. Cancer Invest 4:519–524

    Article  CAS  PubMed  Google Scholar 

  9. Dinda AK, Sarkar C, Roy S, Kharbanda K, Mathur M, Khosla AK, Banerji AK (1993) A transmission and scanning electron microscopic study of tumoral and peritumoral microblood vessels in human gliomas. Neurooncology 16:149–158

    Article  CAS  Google Scholar 

  10. Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331

    Article  CAS  PubMed  Google Scholar 

  11. Rascher G, Fischmann A, Kröger S, Duffner F, Grote EH, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91

    Article  CAS  PubMed  Google Scholar 

  12. Ribatti D (2008) Erythropoietin, the first century. Leuk Res 32:1169–1172

    Article  CAS  PubMed  Google Scholar 

  13. Ribatti D (2010) Erythropoietin and tumor angiogenesis. Stem Cells Dev 19:1–4

    Article  CAS  PubMed  Google Scholar 

  14. Sakanaka M, Wen TC, Matsuda S, Masuda S, Morishita E, Nagao M, Sasaki R (1998) In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci USA 95:4635–4640

    Article  CAS  PubMed  Google Scholar 

  15. Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19:643–651

    Article  CAS  PubMed  Google Scholar 

  16. Brines ML, Ghezzi P, Keenan S, Agnello D, de Lanerolle NC, Cerami C, Itri LM, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97:10526–10531

    Article  CAS  PubMed  Google Scholar 

  17. Sirén AL, Radyushkin K, Boretius S, Kammer D, Riechers CC, Natt O, Sargin D, Watanabe T, Sperling S, Michaelis T, Price J, Meyer B, Frahm J, Ehrenreich H (2006) Global brain atrophy after unilateral parietal lesion and its prevention by erythropoietin. Brain 129:480–489

    Article  PubMed  Google Scholar 

  18. Ehrenreich H, Fischer B, Norra C, Schellenberger F, Stender N, Stiefel M, Sirén AL, Paulus W, Nave KA, Gold R, Bartels C (2007) Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 130:2577–2588

    Article  PubMed  Google Scholar 

  19. Ehrenrecich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck HH, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Rüther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, De Ryck M, Itri L, Prange H, Cerami A, Brines M, Sirén AL (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    Google Scholar 

  20. Yin D, Kawabata H, Tcherniamtchouk O, HuynH T, Black KL, Koeffler HP (2007) Glioblastoma multiforme cells: expression of erythropoietin receptor and response to erythropoietin. Int J Oncol 31:1193–1198

    CAS  PubMed  Google Scholar 

  21. Krieg M, Marti HH, Plate KH (1998) Coexpression of erythropoietin and vascular endothelial growth factor in nervous system tumors associated with von Hippel-Lindau tumor suppressor gene loss of function. Blood 92:3388–3393

    CAS  PubMed  Google Scholar 

  22. Said HM, Hagermann C, Staab A, Stojic J, Kühnel S, Vince GH, Flentje M, Roosen K, Vordermark D (2007) Expression patterns of the hypoxia-related genes osteopontin, CA9, erythropoietin, VEGF and HIF-1α in human glioma in vitro and in vivo. Radiother Oncol 83:398–405

    Article  CAS  PubMed  Google Scholar 

  23. Mittelbronn M, Capper D, Bunz B, Dietz K, Goeppert B, Ajaaj R, Tabatabai G, Stubenvoll F, Schlaszus H, Merseburger AS, Becker R, Freudenstein D, Wick W, Weller M, Mayermann R, Simon P (2007) De novo erythropoietin receptor (EPO-R) expression in human neoplastic glial cells decreases with grade of malignancy but is favourably associated with patient survival. Neuropathol Appl Neurobiol 33:299–307

    Article  CAS  PubMed  Google Scholar 

  24. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737

    Article  CAS  PubMed  Google Scholar 

  25. Ribatti D (2010) The chick embryo chorioallantoic membrane in the study of angiogenesis and metastasis. Springer, Berlin

    Book  Google Scholar 

  26. Kelinhues P, Burger PC, Scheithauer BW (1993) The new WHO classification of brain tumours. Brain Pathol 3:255–268

    Article  Google Scholar 

  27. Elias H, Hyde DM (eds) (1983) Stereological measurements of isotropic structures. In: A guide to practical stereology. Basel, Karger, pp 22–44

  28. Guidolin D, Zunarelli E, Genedani S, Trentini GP, De Gaetani C, Fuxe K, Benagiano C, Agnati LF (2008) Opposite patterns of age-associated changes in neurons and glial cells of the thalamus of human brain. Neurobiol Aging 29:926–936

    Article  CAS  PubMed  Google Scholar 

  29. Perelman N, Selvaraj SK, Batra S, Luck LR, Erdreich-Epstein A, Coates TD, Kalra VK, Malik P (2003) Placenta growth factor activates monocytes and correlates with sickle cell disease severity. Blood 102:1506–1514

    Article  CAS  PubMed  Google Scholar 

  30. Rizzo JD, Somerfield MR, Hagerty KL, Seidenfeld J, Bohlius J, Bennett CL, Cella DF, Djulbegovic B, Goode MJ, Jakubowski AA, Rarick MU, Regan DH, Lichtin AE (2008) Use of epoetin and darbepoetin in patients with cancer: 2007 American Society of Clinical Oncology/American Society of Hematology clinical practice guideline update. J Clin Oncol 26:132–149

    Article  CAS  PubMed  Google Scholar 

  31. Kayser K, Gabius HJ (1992) Analysis of expression of erythropoietin-binding sites in human lung carcinoma by the biotinylated ligand. Zentrabl Pathol 138:266–270

    CAS  Google Scholar 

  32. Westenfelder C, Baranowski RL (2000) Erythropoietin stimulates proliferation of human renal carcinoma cells. Kidney Int 58:647–657

    Article  CAS  PubMed  Google Scholar 

  33. Yasuda Y, Musha T, Tanaka H, Fujita Y, Fujita H, Utsumi H, Matsuo T, Masuda S, Nagao M, Sasaki R, Nakamura Y (2001) Inhibition of erythropoietin signaling destroys xenografts of ovarian and uterine cancers in nude mice. Br J Cancer 84:836–843

    Article  CAS  PubMed  Google Scholar 

  34. Yasuda Y, Fujita Y, Masuda S, Musha T, Ueda K, Tanaka H, Fujita H, Matsuo T, Nagao M, Sasaki R, Nakamura Y (2002) Erythropoietin is involved in growth and angiogenesis in malignant tumors of female reproductive organs. Carcinogenesis 23:1797–1805

    Article  CAS  PubMed  Google Scholar 

  35. Acs G, Zhang PJ, McGrath CM, Acs P, McBroom J, Mohyeldin A, Liu S, Lu H, Verma A (2003) Hypoxia-inducible erythropoietin signaling in squamous dysplasia and squamous cell carcinoma of the uterine cervix and its potential role in cervical carcinogenesis and tumor progression. Am J Pathol 162:1789–1806

    Article  CAS  PubMed  Google Scholar 

  36. Batra S, Perelman N, Luck LR, Shimada H, Malik P (2003) Pediatric tumor cells express erythropoietin and a functional erythropoietin receptor that promotes angiogenesis and tumor cell survival. Lab Invest 83:1477–1487

    Article  CAS  PubMed  Google Scholar 

  37. Hengartner MO, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76:665–676

    Article  CAS  PubMed  Google Scholar 

  38. Acs G, Zhang PJ, Rebbeck TR, Acs P, Verma A (2002) Immunohistochemical expression of erythropoietin and erythropoietin receptor in breast carcinoma. Cancer 95:969–981

    Article  CAS  PubMed  Google Scholar 

  39. Arcasoy MO, Amin K, Karayal AF, Chou SC, Raleigh JA, Varia MA, Haroon ZA (2002) Functional significance of erythropoietin receptor expression in breast cancer. Lab Invest 82:911–918

    CAS  PubMed  Google Scholar 

  40. Dillard DG, Venkatraman G, Cohen C, Delgaudio J, Gal AA, Mattox DE (2001) Immunolocalization of erythropoietin and erythropoietin receptor in vestibular schwannoma. Acta Otolaryngol 121:149–152

    Article  CAS  PubMed  Google Scholar 

  41. Yasuda Y, Fujita Y, Matsuo T, Koinuma S, Hara S, Tazaki A, Onozaki M, Hashimoto M, Musha T, Ogawa K, Fujita H, Nakamura Y, Shiozaki H, Utsumi H (2003) Erythropoietin regulates tumour growth of human malignancies. Carcinogenesis 24:1021–1029

    Article  CAS  PubMed  Google Scholar 

  42. Okazaki T, Ebihara S, Asada M, Yamanda S, Niu K, Arai H (2008) Erythropoietin promotes the growth of tumors lacking its receptor and decreases survival of tumor-bearing mice by enhancing angiogenesis. Neoplasia 10:932–939

    CAS  PubMed  Google Scholar 

  43. Hardee ME, Cao Y, Fu P, Jiang X, Zhao Y, Rabbani ZN, Vujaskovic Z, Dewhirst MW, Arcasoy MO (2007) Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression. PLoS One 2:e549

    Article  PubMed  Google Scholar 

  44. Olujohungbe A, Handa S, Holmes J (1987) Do erythropoietin accelerate malignant transformation in multiple myeloma? Postgrad Med J 73:163–164

    Article  Google Scholar 

  45. Bunworasate U, Arnouk H, Mindermal H, O’Loughlin KL, Sait SN, Barcos M, Stewart CC, Baer MR (2001) Erythropoietin-dependent transformation of myelodysplastic syndrome to acute monoblastic leukemia. Blood 98:3492–3494

    Article  CAS  PubMed  Google Scholar 

  46. Ribatti D (2002) A potential role of erythropoietin in angiogenesis associated with myelodysplastic syndromes. Leukemia 16:1890

    Article  CAS  PubMed  Google Scholar 

  47. Crivellato E, Nico B, Vacca A, Djonov V, Presta M, Ribatti D (2004) Recombinant human erythropoietin induces intussusceptive microvascular growth in vivo. Leukemia 18:331–336

    Article  CAS  PubMed  Google Scholar 

  48. Nico B, Crivellato E, Guidolin D, Annese T, Annese T, Longo V, Finato N, Vacca A, Ribatti D (2010) Intussusceptive microvascular growth in human glioma. Clin Exp Med 10:93–98

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported in part by MIUR (PRIN 2007), Rome, and Fondazione Cassa di Risparmio di Puglia, Bari, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nico, B., Annese, T., Guidolin, D. et al. Epo is involved in angiogenesis in human glioma. J Neurooncol 102, 51–58 (2011). https://doi.org/10.1007/s11060-010-0294-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0294-6

Keywords

Navigation