Skip to main content

Advertisement

Log in

Imatinib and docetaxel in combination can effectively inhibit glioma invasion in an in vitro 3D invasion assay

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The main problem in the treatment of malignant astrocytomas is their invasive behaviour. Successful resection of the main tumour mass cannot prevent recurrence due to single cells invading the surrounding brain parenchyma at the time of diagnosis. The classical combination therapy, PCV (Procarbazine, CCNU and Vincristine) used for over 30 years; has shown its clinical effectiveness in the treatment of malignant astrocytomas and glioblastomas is still doubtful. Using an in vitro three dimensional invasion model, we tested the effect of the tyrosine kinase inhibitor imatinib and the microtubule inhibitor docetaxel on the invasion activity of a panel of astrocytic tumour cell lines, including two established glioma cell lines, IPSB-18 and SNB-19, and two primary cell lines, originating from glioblastomas, CLOM002 and UPHHJA, and in normal astrocytes. A dose response curve for each drug alone and in combination was determined. The half maximal inhibitory concentration (IC50) concentration of imatinib was between 15.7 and 18.7 μM, which did not affect invasion activity of the cell lines. The IC50 concentration of docetaxel was between 0.7 and 19.8 nM, and at 14.9 nM docetaxel had a slight transient inhibitory effect on invasion activity of all tested cells. The combination of imatinib at 13.5 μM and docetaxel at 14.9 nM, however, synergistically inhibited cell growth and invasion activity and could not be reversed by drug removal. A combination treatment with tyrosine kinase inhibitors and cytotoxic drugs shows promise in tackling both glioma proliferation and invasion, and could present a new treatment regimen for malignant astrocytomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  CAS  PubMed  Google Scholar 

  2. Ohgaki H et al (2004) Genetic pathways to glioblastoma: a population-based study. Cancer Res 64(19):6892–6899

    Article  CAS  PubMed  Google Scholar 

  3. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225

    Article  CAS  PubMed  Google Scholar 

  4. Kleihues P et al (2002) The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61(3):215–225 discussion 226-9

    PubMed  Google Scholar 

  5. Hermanson M et al (1992) Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52(11):3213–3219

    CAS  PubMed  Google Scholar 

  6. Westermark B, Heldin CH, Nister M (1995) Platelet-derived growth factor in human glioma. Glia 15(3):257–263

    Article  CAS  PubMed  Google Scholar 

  7. Sherbenou DW, Druker BJ (2007) Applying the discovery of the Philadelphia chromosome. J Clin Invest 117(8):2067–2074

    Article  CAS  PubMed  Google Scholar 

  8. Kilic T et al (2000) Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60(18):5143–5150

    CAS  PubMed  Google Scholar 

  9. Nagar B (2007) c-Abl tyrosine kinase and inhibition by the cancer drug imatinib (Gleevec/STI-571). J Nutr 137(6 Suppl 1):1518S–1523S discussion 1548S

    CAS  PubMed  Google Scholar 

  10. Raymond E et al (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26(28):4659–4665

    Article  CAS  PubMed  Google Scholar 

  11. Katz D et al (2004) Neoadjuvant imatinib for unresectable gastrointestinal stromal tumor. Anticancer Drugs 15(6):599–602

    Article  CAS  PubMed  Google Scholar 

  12. Hagerstrand D et al (2006) Characterization of an imatinib-sensitive subset of high-grade human glioma cultures. Oncogene 25(35):4913–4922

    Article  CAS  PubMed  Google Scholar 

  13. Bissery MC, et al. (1995) Docetaxel (Taxotere): a review of preclinical and clinical experience. Part I: preclinical experience. Anticancer Drugs 6(3):339–355, 363–368

    Google Scholar 

  14. Plosker GL, Hurst M (2001) Paclitaxel: a pharmacoeconomic review of its use in non-small cell lung cancer. Pharmacoeconomics 19(11):1111–1134

    Article  CAS  PubMed  Google Scholar 

  15. Sanson M et al (2000) Second line chemotherapy with docetaxel in patients with recurrent malignant glioma: a phase II study. J Neurooncol 50(3):245–249

    Article  CAS  PubMed  Google Scholar 

  16. Forsyth P et al (1996) Phase II trial of docetaxel in patients with recurrent malignant glioma: a study of the National Cancer Institute of Canada Clinical Trials Group. Invest New Drugs 14(2):203–206

    Article  CAS  PubMed  Google Scholar 

  17. Koukourakis MI et al (1999) Concurrent twice-a-week docetaxel and radiotherapy: a dose escalation trial with immunological toxicity evaluation. Int J Radiat Oncol Biol Phys 43(1):107–114

    Article  CAS  PubMed  Google Scholar 

  18. Sampath P et al (2006) Interstitial docetaxel (Taxotere), carmustine and combined interstitial therapy: a novel treatment for experimental malignant glioma. J Neurooncol 80(1):9–17

    Article  CAS  PubMed  Google Scholar 

  19. Heenan M et al (1997) Isolation from a human MDR lung cell line of multiple clonal subpopulations which exhibit significantly different drug resistance. Int J Cancer 71(5):907–915

    Article  CAS  PubMed  Google Scholar 

  20. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  21. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76(9):4350–4354

    Article  CAS  PubMed  Google Scholar 

  22. Del Duca D, Werbowetski T, Del Maestro RF (2004) Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 67(3):295–303

    Article  PubMed  Google Scholar 

  23. Servidei T et al (2006) Increased sensitivity to the platelet-derived growth factor (PDGF) receptor inhibitor STI571 in chemoresistant glioma cells is associated with enhanced PDGF-BB-mediated signaling and STI571-induced Akt inactivation. J Cell Physiol 208(1):220–228

    Article  CAS  PubMed  Google Scholar 

  24. Gucluler G, Baran Y (2009) Docetaxel enhances the cytotoxic effects of imatinib on Philadelphia positive human chronic myeloid leukemia cells. Hematology 14(3):139–144

    Article  CAS  PubMed  Google Scholar 

  25. Amberger VR et al (1997) Oligodendrocyte-type 2 astrocyte progenitors use a metalloendoprotease to spread and migrate on CNS myelin. Eur J Neurosci 9(1):151–162

    Article  CAS  PubMed  Google Scholar 

  26. Ren H et al (2009) Differential effect of imatinib and synergism of combination treatment with chemotherapeutic agents in malignant glioma cells. Basic Clin Pharmacol Toxicol 104(3):241–252

    Article  CAS  PubMed  Google Scholar 

  27. Bihorel S et al (2007) Influence of breast cancer resistance protein (Abcg2) and p-glycoprotein (Abcb1a) on the transport of imatinib mesylate (Gleevec) across the mouse blood-brain barrier. J Neurochem 102(6):1749–1757

    Article  CAS  PubMed  Google Scholar 

  28. le Coutre P et al (2004) Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53(4):313–323

    Article  CAS  PubMed  Google Scholar 

  29. Kemper EM et al (2003) Increased penetration of paclitaxel into the brain by inhibition of P-Glycoprotein. Clin Cancer Res 9(7):2849–2855

    CAS  PubMed  Google Scholar 

  30. Kemper EM et al (2004) Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 40(8):1269–1274

    Article  CAS  PubMed  Google Scholar 

  31. Fracasso PM et al (2004) Phase I study of docetaxel in combination with the P-glycoprotein inhibitor, zosuquidar, in resistant malignancies. Clin Cancer Res 10(21):7220–7228

    Article  CAS  PubMed  Google Scholar 

  32. Chamberlain MC (2006) Treatment options for glioblastoma. Neurosurg Focus 20(4):E2–E55

    Article  Google Scholar 

  33. Carella AM, et al. (2010) Kinase domain mutations of BCR-ABL identified at diagnosis before imatinib-based therapy are associated with progression in patients with high Sokal risk chronic phase chronic myeloid leukemia. Leuk Lymphoma 51(2):275–278

    Article  CAS  PubMed  Google Scholar 

  34. Kim SH, et al. (2009) Analysis of Bcr-Abl kinase domain mutations in Korean chronic myeloid leukaemia patients: poor clinical outcome of P-loop and T315I mutation is disease phase dependent. Hematol Oncol 27(4):190–197

    Article  CAS  PubMed  Google Scholar 

  35. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5(5):341–354

    Article  CAS  PubMed  Google Scholar 

  36. Heimberger AB et al (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11(4):1462–1466

    Article  CAS  PubMed  Google Scholar 

  37. Haberler C et al (2006) Immunohistochemical analysis of platelet-derived growth factor receptor-alpha, -beta, c-kit, c-abl, and arg proteins in glioblastoma: possible implications for patient selection for imatinib mesylate therapy. J Neurooncol 76(2):105–109

    Article  CAS  PubMed  Google Scholar 

  38. Jiang R et al (2006) Pathway alterations during glioma progression revealed by reverse phase protein lysate arrays. Proteomics 6(10):2964–2971

    Article  CAS  PubMed  Google Scholar 

  39. Stanulla M et al (1995) Coexpression of stem cell factor and its receptor c-Kit in human malignant glioma cell lines. Acta Neuropathol 89(2):158–165

    Article  CAS  PubMed  Google Scholar 

  40. Steelman LS et al (2004) JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18(2):189–218

    Article  CAS  PubMed  Google Scholar 

  41. Skorski T et al (1995) Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86(2):726–736

    CAS  PubMed  Google Scholar 

  42. Mogi M et al (2003) Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 278(40):39068–39075

    Article  CAS  PubMed  Google Scholar 

  43. Leslie EM, Deeley RG, Cole SP (2005) Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharmacol 204(3):216–237

    Article  CAS  PubMed  Google Scholar 

  44. van den Heuvel-Eibrink MM et al (2007) CD34-related coexpression of MDR1 and BCRP indicates a clinically resistant phenotype in patients with acute myeloid leukemia (AML) of older age. Ann Hematol 86(5):329–337

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to sincerely thank Prof. Geoff Pilkington, university of Portsmouth, for his kind donation of the cell lines CLOM002, UPHHJA and IPSB-18. We would also like to thank Cancer Research Ireland for their support in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Kinsella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinsella, P., Clynes, M. & Amberger-Murphy, V. Imatinib and docetaxel in combination can effectively inhibit glioma invasion in an in vitro 3D invasion assay. J Neurooncol 101, 189–198 (2011). https://doi.org/10.1007/s11060-010-0246-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0246-1

Keywords

Navigation