Skip to main content

Advertisement

Log in

HGF upregulates CXCR4 expression in gliomas via NF-κB: implications for glioma cell migration

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Invasion is a hallmark of malignant gliomas and is the main reason for therapeutic failure and recurrence of the tumor. CXCR4 is a key chemokine receptor implicated in glioma cell migration whose expression is regulated by hypoxia. Here, we report that hepatocyte growth factor (HGF) upregulated CXCR4 protein expression in glioma cells. HGF pre-treatment increased migration of U87MG and LN229 glioma cells towards the CXCR4 ligand, stromal cell-derived factor-1α (SDF-1α). AMD3100, a CXCR4 inhibitor, inhibited the increased migration of HGF pre-treated LN229 glioma cells towards SDF-1α. Following exposure to HGF and hypoxia, both cell lines showed nuclear translocation of NF-κB (p65). The HGF- and hypoxia-induced nuclear translocation of NF-κB (p65) involved phosphorylation and degradation of IκB-α. Knock-down of NF-κB expression inhibited the induction of CXCR4 expression in response to HGF, but not to hypoxia. However, knock-down of NF-κB expression inhibited the induction of CXCR4 expression in response to hypoxia in the presence of HGF. NF-κB mediated migration towards SDF-1α in response to HGF. Knock-down of NF-κB expression resulted in decreased migration of HGF pre-treated glioma cells towards SDF-1α. Therefore, HGF upregulates CXCR4 expression via NF-κB and leads to enhanced migration. To our knowledge, this is the first report to show that a crosstalk mediated by NF-κB exists between the SDF-1α/CXCR4 and HGF/c-Met axes relevant to glioma cell migration. These findings imply that effective inhibition of glioma invasion should be directed against several ligand/receptor signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HGF:

Hepatocyte growth factor

SDF-1α:

Stromal cell-derived factor-1α

References

  1. Mueller MM, Werbowetski T, Del Maestro RF (2003) Soluble factors involved in glioma invasion. Acta Neurochir 145:999–1008

    Article  CAS  Google Scholar 

  2. Zagzag D, Esencay M, Mendez O et al (2008) Hypoxia- and vascular endothelial growth factor-induced stromal cell-derived factor-1alpha/CXCR4 expression in glioblastomas: one plausible explanation of Scherer’s structures. Am J Pathol 173:545–560

    Article  CAS  PubMed  Google Scholar 

  3. Giese A, Bjerkvig R, Berens ME et al (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  CAS  PubMed  Google Scholar 

  4. Rempel SA, Dudas S, Ge S et al (2000) Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 6:102–111

    CAS  PubMed  Google Scholar 

  5. Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    Article  CAS  PubMed  Google Scholar 

  6. Scotton CJ, Wilson JL, Scott K et al (2002) Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 62:5930–5938

    CAS  PubMed  Google Scholar 

  7. Su L, Zhang J, Xu H et al (2005) Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin Cancer Res 11:8273–8280

    Article  CAS  PubMed  Google Scholar 

  8. Darash-Yahana M, Pikarsky E, Abramovitch R et al (2004) Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. FASEB J 18:1240–1242

    CAS  PubMed  Google Scholar 

  9. Pan J, Mestas J, Burdick MD et al (2006) Stromal derived factor-1 (SDF-1/CXCL12) and CXCR4 in renal cell carcinoma metastasis. Mol Cancer 5:50–56

    Article  Google Scholar 

  10. Zagzag D, Lukyanov Y, Lan L et al (2006) Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 86:1221–1232

    Article  CAS  PubMed  Google Scholar 

  11. Zhou Y, Larsen PH, Hao C et al (2002) CXCR4 is a major chemokine receptor on glioma cells and mediates their survival. J Biol Chem 277:49481–49487

    Article  CAS  PubMed  Google Scholar 

  12. Wu M, Chen Q, Li D et al (2008) LRRC4 inhibits human glioblastoma cells proliferation, invasion, and proMMP-2 activation by reducing SDF-1 alpha/CXCR4-mediated ERK1/2 and Akt signaling pathways. J Cell Biochem 103:245–255

    Article  CAS  PubMed  Google Scholar 

  13. Zhang J, Sarkar S, Yong VW (2005) The chemokine stromal cell derived factor-1 (CXCL12) promotes glioma invasiveness through MT2-matrix metalloproteinase. Carcinogenesis 26:2069–2077

    Article  CAS  PubMed  Google Scholar 

  14. Masuya D, Huang C, Liu D et al (2004) The tumour-stromal interaction between intratumoral c-Met and stromal hepatocyte growth factor associated with tumour growth and prognosis in non-small-cell lung cancer patients. Br J Cancer 90:1555–1562

    Article  CAS  PubMed  Google Scholar 

  15. Fujiuchi Y, Nagakawa O, Murakami K et al (2003) Effect of hepatocyte growth factor on invasion of prostate cancer cell lines. Oncol Rep 10:1001–1006

    CAS  PubMed  Google Scholar 

  16. Hara S, Nakashiro K, Klosek SK et al (2006) Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncol 42:593–598

    Article  CAS  PubMed  Google Scholar 

  17. Martin TA, Parr C, Davies G et al (2003) Growth and angiogenesis of human breast cancer in a nude mouse tumour model is reduced by NK4, a HGF/SF antagonist. Carcinogenesis 24:1317–1323

    Article  CAS  PubMed  Google Scholar 

  18. Miura Y, Kozuki Y, Yagasaki K (2003) Potentiation of invasive activity of hepatoma cells by reactive oxygen species is mediated by autocrine/paracrine loop of hepatocyte growth factor. Biochem Biophys Res Commun 305:160–165

    Article  CAS  PubMed  Google Scholar 

  19. Abounader R, Laterra J (2005) Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol 7:436–451

    Article  CAS  PubMed  Google Scholar 

  20. Brockmann MA, Ulbricht U, Gruner K et al (2003) Glioblastoma and cerebral microvascular endothelial cell migration in response to tumor-associated growth factors. Neurosurgery 52:1391–1399 (discussion 9)

    Article  PubMed  Google Scholar 

  21. Burgess T, Coxon A, Meyer S et al (2006) Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 66:1721–1729

    Article  CAS  PubMed  Google Scholar 

  22. Eckerich C, Zapf S, Fillbrandt R et al (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121:276–283

    Article  CAS  PubMed  Google Scholar 

  23. Matteucci E, Locati M, Desiderio MA (2005) Hepatocyte growth factor enhances CXCR4 expression favoring breast cancer cell invasiveness. Exp Cell Res 310:176–185

    Article  CAS  PubMed  Google Scholar 

  24. Vermeulen L, De Wilde G, Notebaert S (2002) Regulation of the transcriptional activity of the nuclear factor-κB p65 subunit. Biochem Pharmacol 64:963–970

    Article  CAS  PubMed  Google Scholar 

  25. Helbig G, Christopherson KW II, Bhat-Nakshatri P et al (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278:21631–21638

    Article  CAS  PubMed  Google Scholar 

  26. Raychaudhuri B, Han Y, Lu T et al (2007) Aberrant constitutive activation of nuclear factor kappaB in glioblastoma multiforme drives invasive phenotype. J Neurooncol 85:39–47

    Article  CAS  PubMed  Google Scholar 

  27. Fujiwara S, Nakagawa K, Harada H et al (2007) Silencing hypoxia-inducible factor-1alpha inhibits cell migration and invasion under hypoxic environment in malignant gliomas. Int J Oncol 30:793–802

    CAS  PubMed  Google Scholar 

  28. Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  PubMed  Google Scholar 

  29. Tu H, Zhou Z, Liang Q et al (2009) SDF-1 and CXCR4 production are stimulated by hepatocyte growth factor and promote glioma cell invasion. Onkologie 32:331–336

    Article  CAS  PubMed  Google Scholar 

  30. Li L, Gondi CS, Dinh DH et al (2007) Transfection with anti-p65 intrabody suppresses invasion and angiogenesis in glioma cells by blocking nuclear factor-kappaB transcriptional activity. Clin Cancer Res 13:2178–2190

    Article  CAS  PubMed  Google Scholar 

  31. Maroni P, Bendinelli P, Matteucci E et al (2007) HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis 28:267–279

    Article  CAS  PubMed  Google Scholar 

  32. Cummins EP, Comerford KM, Scholz C et al (2007) Hypoxic regulation of NF-kappaB signaling. Methods Enzymol 435:479–492

    Article  CAS  PubMed  Google Scholar 

  33. Park MH, Ahn BH, Hong YK et al (2009) Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-kappaB/Sp1-mediated signaling pathways. Carcinogenesis 30:356–365

    Article  CAS  PubMed  Google Scholar 

  34. Sahin A, Vercamer C, Kaminski A et al (2009) Dominant-negative inhibition of Ets 1 suppresses tumor growth, invasion and migration in rat C6 glioma cells and reveals differentially expressed Ets 1 target genes. Int J Oncol 34:377–389

    CAS  PubMed  Google Scholar 

  35. Kunkel P, Muller S, Schirmacher P et al (2001) Expression and localization of scatter factor/hepatocyte growth factor in human astrocytomas. Neuro Oncol 3:82–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grant R01 CA100426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Zagzag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esencay, M., Newcomb, E.W. & Zagzag, D. HGF upregulates CXCR4 expression in gliomas via NF-κB: implications for glioma cell migration. J Neurooncol 99, 33–40 (2010). https://doi.org/10.1007/s11060-010-0111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0111-2

Keywords

Navigation