Skip to main content

Advertisement

Log in

BDNF mRNA expression is significantly upregulated in vestibular schwannomas and correlates with proliferative activity

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The expression of neurotrophic factors, such as artemin, glial cell line-derived neurotrophic factor (GDNF), neurturin, transforming growth factors (TGF)-β1/β2 and brain-derived neurotrophic factor (BDNF), is enhanced in vestibular schwannomas compared to peripheral nerves. Furthermore, this upregulation may correlate with mitotic activity. Vestibular schwannoma arising from Schwann cells of the vestibular nerve are mostly benign and slow-growing. Most of the pathogenic mechanisms regulating the vestibular schwannoma growth process are unknown. An impaired growth regulation and imbalance between mitosis and apoptosis can be assumed. However, molecular mechanisms interfering with regulation of the vestibular schwannoma growth also modulated by mitogenic factors have to be identified. Neurotrophic factors are involved in regulation of developmental processes in neuronal tissues and regeneration after peripheral nerve trauma and also reveal mitogenic effects on glial cell populations. Gene expression profiles of artemin, BDNF, GDNF, TGF-β1/β2 and Ret were determined in the vestibular schwannoma in comparison to the peripheral nerve tissues by using semiquantitative RT-PCR. The expression data were correlated to the proliferation-associated Ki-67 labelling index. A significant higher BDNF expression was observed in the vestibular schwannoma, whereas gene expression of artemin and GDNF was upregulated in peripheral nerves. The correlation between LI and BDNF, TGF-β1 and Ret was found to be significant in the vestibular schwannoma. Our results demonstrate a coherence between BDNF expression and proliferative activity in the vestibular schwannoma. Based on these results, we propose a pivotal role for BDNF in modulating the vestibular schwannoma growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tos M, Thomsen J (1984) Epidemiology of acoustic neuromas. J Laryngol Otol 98:685–692

    Article  CAS  PubMed  Google Scholar 

  2. Evans DG, Moran A, King A, Saeed S, Gurusinghe N, Ramsden R (2005) Incidence of vestibular schwannoma and neurofibromatosis 2 in the North West of England over a 10-year period: higher incidence than previously thought. Otol Neurotol 26:93–97

    Article  PubMed  Google Scholar 

  3. Herwadker A, Vokurka EA, Evans DG, Ramsden RT, Jackson A (2005) Size and growth of sporadic vestibular schwannoma: predictive value of information available at presentation. Otol Neurotol 26:86–92

    Article  PubMed  Google Scholar 

  4. Gomez-Brouchet A, Delisle MB, Cognard C, Charlet JP, Deguine O, Fraysse B (2001) Vestibular schwannomas: correlations between magnetic resonance imaging and histopathologic appearance. Otol Neurotol 22:79–86

    Article  CAS  PubMed  Google Scholar 

  5. Weerda H, Gamberger TI, Siegner A, Gjuric M, Tamm ER (1998) Effects of transforming growth factor-β1 and basic fibroblast growth factor on proliferation of cell cultures derived from human vestibular nerve schwannoma. Acta Otolaryngol 118:337–343

    Article  CAS  PubMed  Google Scholar 

  6. Cardillo MR, Filipo R, Monini S, Aliotta N, Barbara M (1999) Transforming growth factor-beta1 expression in human acoustic neuroma. Am J Otol 20:65–68

    CAS  PubMed  Google Scholar 

  7. Diensthuber M, Brandis A, Lenarz T, Stover T (2004) Co-expression of transforming growth factor-β1 and glial cell line-derived neurotrophic factor in vestibular schwannoma. Otol Neurotol 25:359–365

    Article  CAS  PubMed  Google Scholar 

  8. Koutsimpelas D, Stripf T, Heinrich UR, Mann WJ, Brieger J (2007) Expression of vascular endothelial growth factor and basic fibroblast growth factor in sporadic vestibular schwannomas correlates to growth characteristics. Otol Neurotol 28:1094–1099

    Article  PubMed  Google Scholar 

  9. Löttrich M, Mawrin C, Chamaon K, Kirches E, Dietzmann K, Freigang B (2007) Expression of transforming growth factor-beta receptor type 1 and type 2 in human sporadic vestibular Schwannoma. Pathol Res Pract 203:245–249

    Article  PubMed  Google Scholar 

  10. Notterpek L (2003) Neurotrophins in myelination: a new role for a puzzling receptor. Trends Neurosci 26:232–234

    Article  CAS  PubMed  Google Scholar 

  11. Rosenberg SS, Ng BK, Chan JR (2006) The quest of remyelination: a new role for neurotrophins and their receptors. Brain Pathol 16:288–294

    Article  CAS  PubMed  Google Scholar 

  12. Ogata T, Yamamoto S, Nakamura K, Tanaka S (2006) Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol 33:51–62

    Article  CAS  PubMed  Google Scholar 

  13. Johnson EO, Charchanti A, Soucacos PN (2008) Nerve repair: experimental and clinical evaluation of neurotrophic factors in peripheral nerve regeneration. Injury 39(Suppl 3):S37–S42

    Article  PubMed  Google Scholar 

  14. Skaper SD (2008) The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors. CNS Neurol Disord Drug Targets 7:46–62

    Article  CAS  PubMed  Google Scholar 

  15. Gould TW, Enomoto H (2009) Neurotrophic modulation of motor neuron development. Neuroscientist 15:105–116

    Article  CAS  PubMed  Google Scholar 

  16. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner M, Araki T, Johnson EM Jr, Milbrandt J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFR-α-Ret receptor complex. Neuron 21:1291–1302

    Article  CAS  PubMed  Google Scholar 

  17. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, Milbrandt J (1996) Neurturin, a relative of glial cell line-derived neurotrophic factor. Nature 384:467–470

    Article  CAS  PubMed  Google Scholar 

  18. Akerud P, Alberch J, Eketjäll S, Wagner J, Arenas E (1999) Differential effects of glial cell line-derived neurotrophic factor and neurturin on developing and adult substantia nigra dopaminergic neurons. J Neurochem 73:70–78

    Article  CAS  PubMed  Google Scholar 

  19. Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM (2001) Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development 128:3685–3695

    CAS  PubMed  Google Scholar 

  20. Paveliev M, Airaksinen MS, Saarma M (2004) GDNF family ligands activate multiple events during axonal growth in mature sensory neurons. Mol Cell Neurosci 25:453–459

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Z, Peng X, Fink DJ, Mata M (2009) HSV-mediated transfer of artemin overcomes myelin inhibition to improve outcome after spinal cord injury. Mol Ther 17:1173–1179

    Article  CAS  PubMed  Google Scholar 

  22. Kiszewski CA, Becceril E, Baquera J, Aguilar LD, Hernandez-Pando R (2003) Expression of transforming growth factor-β isoforms and their receptors in lepromatous and tuberculoid leprosy. Scand J Immunol 57:279–285

    Article  CAS  PubMed  Google Scholar 

  23. Wimmel A, Wiedenmann B, Rosewicz S (2003) Autocrine growth inhibition by transforming growth factor β1 (TGF-β1) in human neuroendocrine tumor cells. Gut 52:1308–1316

    Article  CAS  PubMed  Google Scholar 

  24. Henke W, Herdel K, Jung K, Schnorr D, Loening SA (1997) Betaine improves the PCR amplification of GC-rich DNA sequences. Nucleic Acids Res 25:3957–3958

    Article  CAS  PubMed  Google Scholar 

  25. Aguiar PH, Tatagiba M, Dankoweit-Timpe E, Matthies C, Samii M, Ostertag H (1995) Proliferative activity of acoustic neurilemomas without neurofibromatosis determined by monoclonal antibody MIB-1. Acta Neurochir 134:35–39

    Article  CAS  Google Scholar 

  26. Aguiar PH, Tatagiba M, Samii M, Dankoweit-Timpe E, Ostertag H (1995) The comparison between the growth fraction of bilateral vestibular schwannomas in neurofibromatosis 2 (NF2) and unilateral vestibular schwannomas using the monoclonal antibody MIB-1. Acta Neurochir 134:40–45

    Article  CAS  Google Scholar 

  27. Charabi S, Klinken L, Tos M, Thomsen J (1994) Histopathology and growth pattern of cystic acoustic neuromas. Laryngoscope 104:1348–1352

    Article  CAS  PubMed  Google Scholar 

  28. Mukherjee J, Kamnasaran D, Balasubramaniam A, Radovanovic I, Zadeh G, Kiehl TR, Guha A (2009) Human schwannomas express activated platelet-derived growth factor receptors and c-kit and growth inhibited by Gleevec (Imatinib mesylate). Cancer Res 69:5099–5107

    Article  CAS  PubMed  Google Scholar 

  29. Cravioto H (1969) The ultrastructure of acoustic nerve tumors. Acta Neuropathol 12:116–140

    Article  CAS  PubMed  Google Scholar 

  30. Ridley AJ, Davis JB, Stroobant P, Land H (1989) Transforming growth factors beta 1 and beta 2 are mitogens for rat Schwann cells. J Cell Biol 109:3419–3424

    Article  CAS  PubMed  Google Scholar 

  31. Einheber S, Hannocks MJ, Metz CN, Rifkin DB, Salzer JL (1995) Transforming growth factor-beta 1 regulates axon/Schwann cell interactions. J Cell Biol 129:443–458

    Article  CAS  PubMed  Google Scholar 

  32. Guenard V, Gwynn LA, Wood PM (1995) Transforming growth factor-beta blocks myelination but not ensheathment of axons by Schwann cells in vitro. J Neurosci 15:419–428

    CAS  PubMed  Google Scholar 

  33. Bizzarri M, Filipo R, Valente MG, Bernardeschi D, Ronchetti F, Monini S, Chiappini I, Barbara M (2002) Release of transforming growth factor beta-1 in a vestibular schwannoma cell line. Acta Otolaryngol 122:785–787

    Article  PubMed  Google Scholar 

  34. Iwase T, Jung CG, Bae H, Zhang M, Soliven B (2005) Glial cell line-derived neurotrophic factor-induced signaling in Schwann cells. J Neurochem 94:1488–1499

    Article  CAS  PubMed  Google Scholar 

  35. Ceyhan GO, Giese NA, Erkan M, Kerscher AG, Wente MN, Giese T, Büchler MW, Friess H (2006) The neurotrophic factor artemin promotes pancreatic cancer invasion. Ann Surg 244:274–281

    Article  PubMed  Google Scholar 

  36. Dooley S, Weng H, Mertens PR (2009) Hypotheses on the role of transforming growth factor-beta in the onset and progression of hepatocellular carcinoma. Dig Dis 27:93–101

    Article  PubMed  Google Scholar 

  37. Futami H, Sakai R (2009) RET protein promotes non-adherent growth of NB-39-nu neuroblastoma cell line. Cancer Sci 100:1034–1039

    Article  CAS  PubMed  Google Scholar 

  38. Ng WH, Wan GQ, Peng ZN, Too HP (2009) Glial cell-line derived neurotrophic factor (GDNF) family of ligands confer chemoresistance in a ligand-specific fashion in malignant gliomas. J Clin Neurosci 16:427–436

    Article  CAS  PubMed  Google Scholar 

  39. Qiao S, Iwashita T, Ichihara M, Murakumo Y, Yamaguchi A, Isogai M, Sakata K, Takahashi M (2009) Increased expression of glial cell line-derived neurotrophic factor and neurturin in a case of colon adenocarcinoma associated with diffuse ganglioneuromatosis. Clin Neuropathol 28:105–112

    CAS  PubMed  Google Scholar 

  40. Chan JR, Cosgaya JM, Wu YK, Shooter EM (2001) Neurotrophins are key mediators of myelination program in the peripheral nervous system. Proc Natl Acad Sci USA 98:14661–14668

    Article  CAS  PubMed  Google Scholar 

  41. Cosgaya JM, Chan JR, Shooter EM (2002) The neurotrophin receptor p75NTR as a positive modulator of myelination. Science 298:1245–1248

    Article  CAS  PubMed  Google Scholar 

  42. Tolwani RJ, Cosgaya JM, Varma S, Jacob R, Kuo LE, Shooter EM (2004) BDNF overexpression produces a long-term increase in myelin formation in the peripheral nervous system. J Neurosci Res 77:662–669

    Article  CAS  PubMed  Google Scholar 

  43. de Groot DM, Coenen AJ, Verhofstad A, van Herp F, Martens GJ (2006) In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor. Mol Endocrinol 20:2987–2998

    Article  PubMed  Google Scholar 

  44. Xiao J, Wong AW, Willingham MM, Kaasinen SK, Hendry IA, Howitt J, Putz U, Barrett GL, Kilpatrick TJ, Murray SS (2009) BDNF exerts contrasting effects on peripheral myelination of NGF-dependent and BDNF-dependent DRG neurons. J Neurosci 29:4016–4022

    Article  CAS  PubMed  Google Scholar 

  45. Hempstead BL, Salzer JL (2002) A glial spin on neurotrophins. Science 298:1184–1186

    Article  CAS  PubMed  Google Scholar 

  46. Zhou XF, Li HY (2007) Roles of glial p75NTR in axonal regeneration. J Neurosci Res 85:1601–1605

    Article  CAS  PubMed  Google Scholar 

  47. Bonetti B, Panzeri L, Carner M, Zamboni G, Rizzuto N, Moretto G (1997) Human neoplastic Schwann cells: changes in the expression of neurotrophins and their low-affinity receptor p75. Neuropathol Appl Neurobiol 23:380–386

    Article  CAS  PubMed  Google Scholar 

  48. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol 133:1710–1715

    CAS  PubMed  Google Scholar 

  49. Niemczyk K, Vaneecloo FM, Lecomte MH, Lejeune JP, Lemaitre L, Skarzynski H, Vincent C, Dubrulle F (2000) Correlation between Ki-67 index and some clinical aspects of acoustic neuromas (vestibular schwannomas). Otolaryngol Head Neck Surg 123:779–783

    Article  CAS  PubMed  Google Scholar 

  50. Steinhart H, Triebswetter F, Wolf S, Gress H, Bohlender J, Iro H (2003) Das Wachstum von Schwannomen des Nervus vestibularis korreliert mit der Zellproliferation. Laryngo Rhino Otol 82:318–321

    Article  CAS  Google Scholar 

  51. O’Reilly BF, Kishore A, Crowther JA, Smith C (2004) Correlation of the growth factor receptor expression with clinical growth in vestibular schwannoma. Otol Neurotol 25:791–796

    Article  PubMed  Google Scholar 

  52. Russel DS, Rubinstein LJ (1989) Pathology of tumors of the nervous system, 5th edn. Edward Arnold, London, pp 533–560

    Google Scholar 

  53. Jänisch W, Güthert H, Schreiber D (1976) Pathologie der Tumoren des Zentralnervensystems. Gustav Fischer, Jena, pp 260–269

    Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Pathology, Director Prof. Dr. H. Kreipe, for kindly providing the tumour tissues and for support in immunohistochemistry, P. Erfurt for technical assistance, and B. Vaske for help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Wissel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, F., Stöver, T., Warnecke, A. et al. BDNF mRNA expression is significantly upregulated in vestibular schwannomas and correlates with proliferative activity. J Neurooncol 98, 31–39 (2010). https://doi.org/10.1007/s11060-009-0063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-0063-6

Keywords

Navigation