Skip to main content

Advertisement

Log in

Direct seeding of Oreomunnea mexicana, a threatened tree species from Southeastern Mexico

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Compared to enrichment planting techniques, direct seeding may represent a viable low-cost method to ensure the conservation and recovery of forest ecosystems. However, it is necessary to identify the environmental factors that affect seed germination and seedling establishment in order to improve the success of this technique. It has been suggested that the establishment of Oreomunnea mexicana (Juglandaceae), a threatened tropical montane cloud forest tree species, is associated with microsites of high soil moisture. We assessed seedling emergence in O. mexicana through direct seeding in a secondary forest and characterized the microenvironmental conditions of the sowing microsite. We also assessed the effect of seed hydration on seedling emergence and evaluated the effect of soil moisture content and seed hydration in O. mexicana seed germination and seedling emergence under laboratory conditions. Seedling emergence was lower in the field than in the laboratory (37 vs. 42 %, respectively). At microsite level, seedling emergence correlated positively with soil moisture content but negatively with vegetation cover. After 11 months, 52 % of the emerged seedlings still survived. Under laboratory conditions, seedling emergence did not differ significantly between hydrated and non-hydrated seeds (43.2 ± 0.52 vs. 40.3 ± 0.51 %, respectively), but did between high and low soil moisture contents (80 ± 0.18 vs. 3.5 ± 0.085 %, respectively). With appropriate soil moisture and vegetation cover conditions, O. mexicana seed introduction into secondary forest is a reliable technique. However, the method could be improved by protecting the seedlings from physical damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adjers G, Hadengganan S, Kuusipalo J, Nuryanto K, Vesa L (1995) Enrichment planting of dipterocarps in logged-over secondary forests: effect of width, direction and maintenance method of planting line on selected Shorea species. For Ecol Manag 73:259–270. doi:10.1016/0378-1127(94)03488-I

    Article  Google Scholar 

  • Aldrich M, Billington C, Edwards M, Laidlaw R (1997) Tropical montane cloud forests: an urgent priority for conservation. World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  • Alvarado-López S, Soriano D, Velázquez N, Orozco-Segovia A, Gamboa-deBuen A (2014) Priming effects on seed germination in Tecoma stans (Bignoniaceae) and Cordia megalantha (Boraginaceae), two tropical deciduous tree species. Acta Oecol 61:65–70. doi:10.1016/j.actao.2014.10.007

    Article  Google Scholar 

  • Álvarez-Aquino C, Williams-Linera G (2002) Seedling bank dynamics of Fagus grandifolia var. mexicana before and after a mast year in a Mexican cloud forest. J Veg Sci 13:179–184. doi:10.1111/j.1654-1103.2002.tb02037.x

    Google Scholar 

  • Arreola-Flores DP (2016) Análisis de la dinámica del agua en un suelo de bosque de niebla de montaña baja en el centro de Veracruz. Master of Sciences. Instituto de Ecología, A.C., Xalapa, Veracruz, México, p 69

  • Avendaño-Yáñez ML, Sánchez-Velásquez LR, Meave JA, Pineda-López MR (2014) Is facilitation a promising strategy for cloud forest restoration? For Ecol Manag 329:328–333. doi:10.1016/j.foreco.2014.01.051

    Article  Google Scholar 

  • Avendaño-Yáñez ML, Sánchez-Velásquez LR, Meave JA, Pineda-López MR (2016) Can Pinus plantations facilitate reintroduction of endangered cloud forest species? Landsc Ecol Eng 12:99–104. doi:10.1007/s11355-015-0277-z

    Article  Google Scholar 

  • Baskin CC, Baskin JH (2000) Seeds, ecology, biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  • Benítez-Rodríguez L, Gamboa-deBuen A, Sánchez-Coronado ME, Alvarado-López S, Soriano D, Méndez I, Orozco-Segovia A (2014) Effects of seed burial on germination, protein mobilisation and seedling survival in Dodonaea viscosa. Plant Biol 16:732–739. doi:10.1111/plb.12110

    Article  PubMed  Google Scholar 

  • Bentos TV, Nascimento HE, Williamson GB (2013) Tree seedling recruitment in Amazon secondary forest: importance of topography and gap micro-site conditions. For Ecol Manag 287:140–146. doi:10.1016/j.foreco.2012.09.016

    Article  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis, 2nd edn. Am. Soc. Agron, Madison, pp 363–375

    Google Scholar 

  • Blokhina NI (2007) Fossil wood of the Juglandaceae: some questions of taxonomy, evolution, and phylogeny in the family based on wood anatomy. Paleontol J 41:1040–1053. doi:10.1134/S0031030107110032

    Article  Google Scholar 

  • Bruijnzeel LA (2004) Hydrological functions of tropical forest: not seeing the soil for the trees? Agric Ecosyst Environ 104:185–228. doi:10.1016/j.agee.2004.01.015

    Article  Google Scholar 

  • Bubb P, May I, Miles L, Sayer J (2004) Cloud forest agenda. United Nations Environment Programme-World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  • Cabin RJ, Weller SG, Lorence DH, Cordell S, Hadway LJ (2002) Effects of microsite, water, weeding, and direct seeding on the regeneration of native and alien species within a Hawaiian dry forest preserve. Biol Conserv 104:181–190. doi:10.1016/S0006-3207(01)00163-X

    Article  Google Scholar 

  • Camargo JLC, Ferraz IDK, Imakawa AM (2002) Rehabilitation of degraded areas of central Amazonia using direct sowing of forest tree seeds. Restor Ecol 10:636–644. doi:10.1046/j.1526-100X.2002.01044.x

    Article  Google Scholar 

  • Ceccon E, González EJ, Martorell C (2015) Is direct seeding a biologically viable strategy for restoring forest ecosystems? evidences from a meta-analysis. Land Degrad Develop. 27:511–520. doi:10.1002/ldr.2421

    Article  Google Scholar 

  • Challenger A, Dirzo R, López JC, Mendoza E, Lira-Noriega A, Cruz I (2009) Factores de cambio y estado de la biodiversidad. In: Challenger A, Dirzo R (eds) Capital natural de México: Estado de Conservación y Tendencias de Cambio. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, pp 37–73

    Google Scholar 

  • Cole RJ, Holl KD, Keene CL, Zahawi RA (2011) Direct seeding of late-successional trees to restore tropical montane forest. For Ecol Manag 261:1590–1597. doi:10.1016/j.foreco.2010.06.038

    Article  Google Scholar 

  • Corral-Aguirre J, Sánchez-Velásquez LR (2006) Seed ecology and germination treatments in Magnolia dealbata: an endangered species. Flora 201:227–232. doi:10.1016/j.flora.2005.07.004

    Article  Google Scholar 

  • Corrales A, Arnold AE, Ferrer A, Turner BL, Dalling JW (2016a) Variation in ectomycorrhizal fungal communities associated with Oreomunnea mexicana (Juglandaceae) in a Neotropical montane forest. Mycorrhiza 26:1–17. doi:10.1007/s00572-015-0641-8

    Article  PubMed  Google Scholar 

  • Corrales A, Mangan SA, Turner BL, Dalling JW (2016b) An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol Lett 19:383–392. doi:10.1111/ele.12570

    Article  PubMed  Google Scholar 

  • Davies FT, Geneve RL, Kester DE, Hartmann HT (2011) Hartmann and Kester’s plant propagation: principles and practice. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dilcher DL, Manchester SR (1986) Investigations of angiosperms from the Eocene of North America: leaves of the Engelhardleae (Juglandaceae). Bot Gaz 147:189–199

    Article  Google Scholar 

  • Douglas GB, Dodd MB, Power IL (2007) Potential of direct seeding for establishing native plants into pastoral land in New Zealand. N Z J Ecol 31:143–153

    Google Scholar 

  • Doust SJ, Erskine PD, Lamb D (2006) Direct seeding to restore rainforest species: microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. For Ecol Manag 234:333–343. doi:10.1016/j.foreco.2006.07.014

    Article  Google Scholar 

  • Engel VL, Parrotta JA (2001) An evaluation of direct seeding for reforestation of degraded lands in central Sao Paulo state, Brazil. For Ecol Manag 152:169–181. doi:10.1016/S03781127(00)00600-9

    Article  Google Scholar 

  • FAO (2009) Global review of forest pests and diseases. FAO Forestry paper 156. Rome

  • Fenner M, Thompson K (2005) The ecology of seeds. University Press, New York, Cambridge

    Book  Google Scholar 

  • Gaviria J, Engelbrecht BMJ (2015) Effects of drought, pest pressure and light availability on seedling establishment and growth: their role for distribution of tree species across a tropical rainfall gradient. PLoS ONE. doi:10.1371/journal.pone.0143955

    Google Scholar 

  • Ghassemi-Golezani K, Aliloo AA, Valizadeh M, Moghaddam M (2008) Effects of hydro and osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.). Not Bot Horti Agrobot Cluj Napoca 36:29–33

    Google Scholar 

  • González-Espinosa M, Meave JA, Lorea-Hernández FG, Ibarra-Manríquez G, Newton AC (2011) The Red List of Mexican Cloud Forest Trees. Fauna and Flora International, Cambridge

    Google Scholar 

  • Gribko LS, Jones WE (1995) Test of the float method of assessing northern Red Oak Acorn condition. Tree Plant Notes 46:143–147

    Google Scholar 

  • Guarino EDSG, Scariot A (2014) Direct seeding of dry forest tree species in abandoned pastures: effects of grass canopy and seed burial on germination. Ecol Res 29:473–482. doi:10.1007/s11284-014-1143-4

    Article  Google Scholar 

  • Hamilton LS, Juvik JO, Scatena FN (1995) Tropical montane cloud forest. Ecological studies 110. Springer, New York

    Book  Google Scholar 

  • Hegarty TW (1977) Seed activation and seed germination under moisture stress. New Phytol 78:349–359. doi:10.1111/j.1469-8137.1977.tb04838.x

    Article  Google Scholar 

  • Herrera F, Manchester SR, Koll R, Jaramillo C (2014) Fruits of Oreomunnea (Juglandaceae) in the early Miocene of Panama. In: Stevens WD, Montiel OM, Raven P (eds) Paleobotany and biogeography: a festschrift for Alan Graham in His 80th year. Missouri Botanical Garden Press, St Louis, pp 124–133

    Google Scholar 

  • Holl KD, Loik ME, Lin EH, Samuels IA (2000) Tropical montane forest restoration in Costa Rica: overcoming barriers to dispersal and establishment. Restor Ecol 8:339–349. doi:10.1046/j.1526-100x.2000.80049.x

    Article  Google Scholar 

  • Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481. doi:10.1080/01621459.1958.10501452

    Article  Google Scholar 

  • Lamb D, Erskine PD, Parrotta JA (2005) Restoration of degraded tropical forest landscapes. Science 310:1628–1632. doi:10.1126/science.1111773

    Article  CAS  PubMed  Google Scholar 

  • López-Barrera F, González-Espinosa M (2001) Influence of litter on emergence and early growth of Quercus rugosa: a laboratory study. New Forest 21:59–70. doi:10.1023/A:1010623403834

    Article  Google Scholar 

  • McDonald MB (2000) Seed priming. In: Black M, Bewley (eds) Seed technology and its biological basic. Sheffield, Academic Press, London, pp 286–325

  • Millet J, Tran N, Ngoc NV, Thi TT, Prat D (2013) Enrichment planting of native species for biodiversity conservation in a logged tree plantation in Vietnam. New Forest 44:369–383. doi:10.1007/s11056-012-9344-6

    Article  Google Scholar 

  • Montagnini F, Eibl B, Grance L, Maiocco D, Nozzi D (1997) Enrichment planting in overexploited subtropical forests of the Paranaense region of Misiones, Argentina. For Ecol Manag 99:237–246. doi:10.1016/S0378-1127(97)00209-0

    Article  Google Scholar 

  • Montes-Hernández B, López-Barrera F (2013) Seedling establishment of Quercus insignis: a critically endangered oak tree species in southern Mexico. For Ecol Manag 310:927–934. doi:10.1016/j.foreco.2013.09.044

    Article  Google Scholar 

  • Muñoz-Villers LE, López-Blanco J (2008) Land use/cover changes using landsat TM/ETM images in a tropical and biodiverse mountainous area of central-eastern Mexico. Int J Remote Sens 29:71–93. doi:10.1080/01431160701280967

    Article  Google Scholar 

  • Naranjo-Luna FJ (2014) Ecología y genética de Oreomunnea mexicana (Standl.) J.F. Leroy (Junglandaceae), especie relicto del bosque de niebla de la Sierra Juárez, Oaxaca. Master of Sciences. Universidad de la Sierra Juárez, Ixtlán de Juárez, Oaxaca, México

  • Niembro NRA, Mario VT, Sánchez SO (2010) Árboles de Veracruz, 100 especies para la reforestación estratégica. Dalta editorial, México

    Google Scholar 

  • NOM–021–RECNAT–2000 (Norma Oficial Mexicana) (2000) Secretaría de Medio Ambiente y Recursos Naturales. Diario Oficial de la Federación, México

  • Ortega-Pieck A, López-Barrera F, Ramírez-Marcial N, García-Franco JG (2011) Early seedling establishment of two tropical montane cloud forest tree species: the role of native and exotic grasses. For Ecol Manag 261:1336–1343. doi:10.1016/j.foreco.2011.01.013

    Article  Google Scholar 

  • Paquette A, Bouchard A, Cogliastro A (2006) Survival and growth of under-planted trees: a meta-analysis across four biomes. Ecol Appl 16:1575–1589. doi:10.1890/1051-0761(2006)016[1575:SAGOUT]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Pedraza-Pérez RA, Williams-Linera G (2005) Microhabitat conditions for germination and establishment of two tree species in the Mexican montane cloud forest. Agrociencia 39:457–464

    Google Scholar 

  • Peña-Claros M, Boot RGA, Dorado-Lora J, Zonta A (2002) Enrichment planting of Bertholletia excelsa in secondary forest in the Bolivian Amazon: effect of cutting line width on survival, growth and crown traits. For Ecol Manag 161:159–168. doi:10.1016/S0378-1127(01)00491-1

    Article  Google Scholar 

  • Prins H, Maghembe JA (1994) Germination studies on seed of fruit trees indigenous to Malawi. For Ecol Manag 64:111–125. doi:10.1016/0378-1127(94)90285-2

    Article  Google Scholar 

  • Ramírez-Marcial N (2003) Survival and growth of tree seedlings in anthropogenically disturbed Mexican montane rain forests. J Veg Sci 14:881–890. doi:10.1111/j.1654-1103.2003.tb02221.x

    Article  Google Scholar 

  • Ramírez-Marcial N, Camacho-Cruz A, González-Espinosa M (2003) Guía para la propagación de especies leñosas nativas de los Altos y montañas del Norte de Chiapas. El Colegio de la Frontera Sur, San Cristóbal de Las Casas

    Google Scholar 

  • Ramos J, del Amo S (1992) Enrichment planting in a tropical secondary forest in Veracruz, Mexico. For Ecol Manag 54:289–304. doi:10.1016/0378-1127(92)90018-5

    Article  Google Scholar 

  • Rojas-Soto OR, Sosa V, Ornelas JF (2012) Forecasting cloud forest in eastern and southern Mexico: conservation insights under future climate change scenarios. Biodivers Conserv 21:2671–2690. doi:10.1007/s10531-012-0327-x

    Article  Google Scholar 

  • Rowse HR (1996) Drum priming. Seed Sci Technol 24:281–294

    Google Scholar 

  • Rzedowski J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Botánica Mexicana 35:25–44

    Google Scholar 

  • Rzedowski J, Palacios-Chávez R (1977) El bosque de Engelhardtia (Oreomunnea) mexicana en la región de la Chinantla (Oaxaca, México): una reliquia del cenozoico. B Soc Bot Mex 36:93–123

    Google Scholar 

  • Sánchez JA, Orta R, Muñoz BC (2001) Tratamientos pregerminativos de hidratación-deshidratación de las semillas y sus efectos en plantas de interes agrícola. Agron Costarric 25:67–92

    Google Scholar 

  • Sánchez JA, Muñoz BC, Montejo L (2004) Invigoration of pioneer tree seeds using prehydration treatments. Seed Sci Technol 32:355–363. doi:10.15258/sst.2004.32.2.08

    Article  Google Scholar 

  • Scatena FN, Bruijnzeel LA (2011) Global and local variations in tropical montane cloud forest soils. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests science for conservation and management. Cambridge University Press, Cambridge

    Google Scholar 

  • Sharma AD, Rathore SVS, Srinivasan K, Tyagi RK (2014) Comparison of various seed priming methods for seed germination, seedling vigour and fruit yield in okra (Abelmoschus esculentus L. Moench). Sci Hort 165:75–81. doi:10.1016/j.scienta.2013.10.044

    Article  CAS  Google Scholar 

  • Sovu Tigabu M, Savadogo P, Odén PC, Xayvongsa L (2010) Enrichment planting in a logged-over tropical mixed deciduous forest of Laos. J Forest Res 21:273–280. doi:10.1007/s11676-010-0071-6

    Article  Google Scholar 

  • Stone DE (1972) New World Juglandaceae, III. A new perspective of the tropical members with winged fruits. Ann Missouri Bot Gard 59:297–322

    Article  Google Scholar 

  • Stone DE (1973) Patterns in the evolution of amentiferous fruits. Brittonia 25:371–384

    Article  Google Scholar 

  • Summers DM, Bryan BA, Nolan M, Hobbs TJ (2015) The costs of reforestation: a spatial model of the costs of establishing environmental and carbon plantings. Land Use Policy 44:110–121. doi:10.1016/j.landusepol.2014.12.002

    Article  Google Scholar 

  • Toledo-Aceves T, Meave JA, González-Espinosa M, Ramírez-Marcial N (2011) Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. J Environ Manage 92:974–981. doi:10.1016/j.jenvman.2010.11.007

    Article  PubMed  Google Scholar 

  • Tunjai P, Elliott S (2012) Effects of seed traits on the success of direct seeding for restoring southern Thailand’s lowland evergreen forest ecosystem. New Forest 43:319–333. doi:10.1007/s11056-011-9283-7

    Article  Google Scholar 

  • Venudevan B, Srimathi P (2013) Conservation of endangered medicinal tree bael (Aegle marmelos) through seed priming. J Med Plants Res 7:1780–1783. doi:10.5897/JMPR2013.5071

    Google Scholar 

  • Williams-Linera G, Toledo-Garibaldi M, Gallardo Hernández C (2013) How heterogeneous are the cloud forest communities in the mountains of central Veracruz, Mexico? Plant Ecol 214:685–701

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Instituto de Ecología A.C., Jardín Botánico Francisco Javier Clavijero, PRONATURA A.C. and Senderos y Encuentros para un Desarrollo Autónomo Sustentable (SENDAS) A.C., and especially Carlos G. Iglesias Delfín, Víctor M. Vásquez Reyes, Israel Gómez Sánchez and Magdaleno Mendoza Hernández for their help with the fieldwork. Rosario Landgrave Ramírez and Jafet Belmont contributed with statistical advice. The Consejo Nacional de Ciencia y Tecnología (CONACYT) provided a Masters scholarship grant (no. 294658) to Atondo-Bueno and funding (Project CB 2014/01 Ref. 238831).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiola López-Barrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atondo-Bueno, E.J., López-Barrera, F., Bonilla-Moheno, M. et al. Direct seeding of Oreomunnea mexicana, a threatened tree species from Southeastern Mexico. New Forests 47, 845–860 (2016). https://doi.org/10.1007/s11056-016-9548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-016-9548-2

Keywords

Navigation