Skip to main content

Advertisement

Log in

How heterogeneous are the cloud forest communities in the mountains of central Veracruz, Mexico?

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The montane forest in central Veracruz, Mexico is a hotspot of biodiversity. We asked whether lower and upper montane forests could be distinguished in this ecoregion. Variables of vegetation and seasonality in precipitation were tested across 14 sites between 1,250- and 2,550-m elevations. A total of 1,639 individuals and 128 tree species was recorded. There was a unimodal pattern in the richness of species, genera, and families; their richness was positively correlated with precipitation in the wettest quarter of the year, though there were no differences in the basal area and density. Rarefaction, species turnover, nonmetric multidimensional scaling, and a cluster histogram suggest two major groups: lower elevation forests that are less diverse, have low beta diversity and are more similar in composition, with Clethra macrophylla, Liquidambar styraciflua, and Quercus lancifolia as indicator species; and higher elevation forests that are more diverse, have high species turnover, and include forests with Quercus corrugata and Prunus rhamnoides, and forests with Fagus grandifolia, Persea americana, and Ternstroemia sylvatica as indicator species. However, other communities (an Oreomunnea mexicana at the upper site, and a limestone site in the lower forests), exemplify the high regional heterogeneity. We conclude that elevation and seasonality in precipitation produce a directional change in richness and indicator species, but not in vegetation structure. Lower montane forests differed from cloud forests at upper elevations. However, other factors should be included—mainly biogeographic affinities, historic and recent anthropogenic disturbance—to conclusively distinguish them. Montane forest can still be considered very heterogeneous and very high in beta diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiba S, Kitayama K (1999) Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu, Borneo. Plant Ecol 140:139–157

    Article  Google Scholar 

  • Aukema JE, Carlo TA, Collazo JA (2007) Landscape assessment of tree communities in the northern karst region of Puerto Rico. Plant Ecol 189:101–115

    Article  Google Scholar 

  • Bach K, Gradstein R (2011) A comparison of six methods to detect altitudinal belts of vegetation in tropical mountains. Ecotropica 17:1–13

    Google Scholar 

  • Behera MD, Kushwaha SPS (2007) An analysis of altitudinal behavior of tree species in Subansiri district, Eastern Himalaya. Biodivers Conserv 16:1851–1865

    Article  Google Scholar 

  • Bruijnzeel LA, Scatena FN, Hamilton LS (2010) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge

    Google Scholar 

  • Challenger A (1998) Utilización y conservación de los ecosistemas terrestres de México. Pasado, presente y futuro. CONABIO, Instituto de Biología, Sierra Madre, México

  • Challenger A, Soberón J (2008) Los ecosistemas terrestres. In: Sarukhán J et al (eds) Capital natural de Mexico, Conocimiento actual de la biodiversidad, vol 3. CONABIO, Mexico, pp 87–108

    Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen T (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Cházaro M (1992) Exploraciones botánicas en Veracruz y estados circunvecinos. I. Pisos altitudinales de vegetación en el centro de Veracruz y zonas limítrofes con Puebla. La Ciencia y el Hombre 10:67–115

    Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0.0. User’s guide and application published at http://purl.oclc.org/estimates

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gillespie TW, Lipkin B, Sullivan L, Benowitz DR, Pau S, Keppel G (2012) The rarest and least protected forests in biodiversity hotspots. Biodivers Conserv 21:3597–3611

    Article  Google Scholar 

  • González-Espinosa M, Meave JA, Lorea-Hernández F, Ibarra-Manríquez G, Newton AC (2011) The red list of Mexican cloud forest trees. Fauna & Flora International, Cambridge

    Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  • Grytnes JA, Beaman JH (2006) Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. J Biogeogr 33:1838–1849

    Article  Google Scholar 

  • Hemp A (2010) Altitudinal zonation and diversity patterns in the forests of Mount Kilimanjaro, Tanzania. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests, Science for conservation and management. Cambridge University Press, Cambridge, pp 134–141

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA (1971) Forest environments in tropical life zones: a pilot study. Pergamon Press, Oxford

    Google Scholar 

  • Homeier J, Breckle SW, Günter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148

    Article  Google Scholar 

  • Kappelle M, Zamora N (1995) Changes in woody species richness along altitudinal gradient in Talamanca montane Quercus forest, Costa Rica. In: Churchill SP, Balslev H, Forero E, Lutein JL (eds) Biodiversity and conservation of neotropical montane forest. The New York Botanical Garden, New York, pp 135–148

    Google Scholar 

  • Kitayama K (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–171

    Article  Google Scholar 

  • Lieberman D, Lieberman M, Peralta R, Hartshorn GS (1996) Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. J Ecol 84:137–152

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Glob Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • López-Mata L, Villaseñor JL, Cruz-Cárdenas G, Ortiz E, Ortiz-Solorio C (2012) Predictores ambientales de la riqueza de especies de plantas del bosque húmedo de montaña de México. Bot Sci 90:27–36

    Article  Google Scholar 

  • Luna I, Almeida L, Llorente J (1989) Florística y aspectos fitogeográficos del bosque mesófilo de montaña de las cañadas de Ocuilan, estados de Morelos y México. An Inst Biol Ser Bot 59:63–87

    Google Scholar 

  • Martin PH, Fahey TJ, Sherman RE (2010) Vegetation zonation in a neotropical montane forest: environment, disturbance and ecotones. Biotropica 43:533–543

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach

    Google Scholar 

  • Oommen MA, Shanker K (2005) Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology 86:3039–3047

    Article  Google Scholar 

  • R (2007) R, A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna at http://www.R-project.org

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species richness patterns. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Reich RM, Bonham CD, Aguirre-Bravo C, Cházaro-Basañez M (2010) Patterns of tree species richness in Jalisco, Mexico: relation to topography, climate and forest structure. Plant Ecol 210:67–84

    Article  Google Scholar 

  • Rincón A (2007) Estructura y composición florística de los bosques tropicales húmedos de montaña de Santa Cruz Tepetotutla, Oaxaca, México. Bachelor of Science thesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico

  • Rivera LW, Zimmerman JK, Aide TM (2000) Forest recovery in abandoned agricultural lands in a karst region of the Dominican Republic. Plant Ecol 148:115–125

    Article  Google Scholar 

  • Rojas-Soto O, Sosa V, Ornelas JF (2012) Forecasting cloud forest in eastern and southern Mexico: conservation insights under future climate change scenarios. Biodivers Conserv 21:2671–2690

    Article  Google Scholar 

  • Rzedowski J (1978) Vegetación de México. Editorial Limusa, Mexico

    Google Scholar 

  • Rzedowski J (1996) Análisis preliminar de la flora vascular de los bosques mesófilos de montaña de México. Acta Bot Mex 35:25–44

    Google Scholar 

  • Rzedowski J, Palacios-Chávez R (1977) El bosque de Engelhardtia (Oreomunnea) mexicana en la región de La Chinantla (Oaxaca, México). Una reliquia del Cenozoico. Bol Soc Bot Mex 36:93–127

    Google Scholar 

  • Salas-Morales SH, Meave JA (2012) Elevational patterns in the vascular flora of a highly diverse region in southern Mexico. Plant Ecol 213:1209–1220

    Article  Google Scholar 

  • Sánchez-González A, López-Mata L (2005) Plant species richness and diversity along an altitudinal gradient in the Sierra Nevada, Mexico. Divers Distrib 11:567–575

    Article  Google Scholar 

  • SAS (2005) JMP user’s guide. SAS Institute, Cary

    Google Scholar 

  • Tang CQ, Ohsawa M (1997) Zonal transition of evergreen, deciduous, and coniferous forests along the altitudinal gradient on a humid subtropical mountain, Mt. Emei, Sichuan. China Plant Ecol 133:63–78

    Article  Google Scholar 

  • Téllez-Valdés O, Dávila-Aranda P, Lira-Saade E (2006) The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the Cloud Forest in Eastern Mexico. Biodivers Conserv 15:1095–1107

    Article  Google Scholar 

  • Toledo M (2013) Diversidad y estructura de la vegetación arbórea a lo largo del gradient altitudinal del Cofre de Perote, Veracruz. MSc thesis, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico

  • Vázquez JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 86:999–1020

    Article  Google Scholar 

  • Wang ZH, Tang ZY, Fang JY (2007) Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Divers Distrib 13:845–854

    Article  Google Scholar 

  • Williams-Linera G (2007) El bosque de niebla del centro de Veracruz. Ecología, historia y destino en tiempos de fragmentación y cambio climático. CONABIO—Instituto de Ecología, A.C., Mexico

  • Williams-Linera G, Rowden A, Newton AC (2003) Distribution and stand characteristics of relict populations of Mexican beech (Fagus grandifolia var. mexicana). Biol Conserv 109:27–36

    Article  Google Scholar 

Download references

Acknowledgments

The authors grateful to Susana Valencia Avalos for the valuable help with Quercus taxonomy, and to Francisco Lorea in identifying the specimens of Lauraceae. The authors thank Libertad Sanchez for providing access to the unpublished data from the El Mirador site. The authors also thank the owners of all the study sites for allowing us to conduct this research and for protecting their forests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guadalupe Williams-Linera.

Appendix

Appendix

See Table 4.

Table 4 List of tree species in forest sites located between 1,250 and 2,550 m a.s.l. in central Veracruz, Mexico

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams-Linera, G., Toledo-Garibaldi, M. & Hernández, C.G. How heterogeneous are the cloud forest communities in the mountains of central Veracruz, Mexico?. Plant Ecol 214, 685–701 (2013). https://doi.org/10.1007/s11258-013-0199-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-013-0199-5

Keywords

Navigation