Skip to main content
Log in

The Dorsal Nucleus of the Lateral Geniculate Body: Anatomy, Histology, Ontogenesis

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review addresses the structure and function of the main visual thalamic nucleus – the dorsal nucleus of the lateral geniculate body – and its formation during prenatal and postnatal ontogenesis. The structure and development of retinal ganglion cells and neurons in the primary visual cortex connected with this nucleus are also reviewed, along with retinogeniculate, geniculocortical, and corticogeniculate connections. Particular attention is paid to the morphofunctional differences between the elements of the three conducting channels: X, Y, and W, as well as differences in the development of different layers of the dorsal nucleus of the lateral geniculate body. Research conducted in a classic model – the cat – is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackman, J. B., Burbridge, T. J., and Crair, M. C., “Retinal waves coordinate patterned activity throughout the developing visual system,” Nature, 490, No. 7419, 219–225 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adrien, J. and Roffwarg, H. P., “The development of unit activity in the lateral geniculate nucleus of the kitten,” Exp. Neurol., 43, No. 1, 261–275 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Albus, K. and Wolf, W., “Early post-natal development of neuronal function in the kitten’s visual cortex: a laminar analysis,” J. Physiol., 348, No. 1, 153–185 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anderson, J. C., Dehay, C., Friedlander, M. J., et al., “Synaptic connections of physiologically identified geniculocortical axons in kitten cortical area 17,” Proc. R. Soc. Lond. B. Biol. Sci., 250, No. 1329, 187–194 (1992).

    Article  CAS  Google Scholar 

  • Anker, R. L., “The prenatal development of some of the visual pathways in the cat,” J. Comp. Neurol., 173, No. 1, 185–204 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Antonini, A. and Stryker, M., “Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade,” J. Neurosci., 13, No. 8, 3549–3573 (1993a).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antonini, A. and Stryker, M., “Rapid remodeling of axonal arbors in the visual cortex,” Science, 260, No. 5115, 1819–18211 (1993b).

    Article  PubMed  CAS  Google Scholar 

  • Antonini, A., Gillespie, D. C., Crair, M. C., and Stryker, M. P., “Morphology of single geniculocortical afferents and functional recovery of the visual cortex after reverse monocular deprivation in the kitten,” J. Neurosci., 18, No. 23, 9896–9909 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Archer, S., Dubin, M., and Stark, L., “Abnormal development of kitten retino-geniculate connectivity in the absence of action potentials,” Science, 217, No. 4561, 743–745 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, R. and Albus, K., “The geniculocortical system in the early postnatal kitten: An electrophysiological investigation,” Exp. Brain Res., 47, No. 1, 144–150 (1982).

    Article  Google Scholar 

  • Bickford, M. E., Guido, W., and Godwin, D. W., “Neurofilament proteins in Y-cells of the cat lateral geniculate nucleus: Normal expression and alteration with visual deprivation,” J. Neurosci., 18, No. 16, 6549–6557 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bishop, P. O., Kozak, W., Levick, W. R., and Vakkur, G. J., “The determination of the projection of the visual field on to the lateral geniculate nucleus in the cat,” J. Physiol., 163, No. 3, 503–539 (1962).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blakemore, C. and Van Sluyters, R. C., “Reversal of the physiological effects of monocular deprivation in kittens: further evidence for a sensitive period,” J. Physiol., 237, No. 1, 195–216 (1974).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonds, A. B. B. and Freeman, R. D. D., “Development of optical quality in the kitten eye,” Vision Res., 18, No. 4, 391–398 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Bowling, D. B. and Caverhill, J. I., “ON/OFF organization in the cat lateral geniculate nucleus: Sublaminae vs. columns,” J. Comp. Neurol., 283, No. 1, 161–168 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Bowling, D. B. and Michael, C. R., “Projection patterns of single physiologically characterized optic tract fibres in cat. Intergovernmental Panel on Climate Change, editor,” Nature, 286, No. 5776, 899–902 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Bowling, D. B. and Michael, C. R., “Terminal patterns of single, physiologically characterized optic tract fibers in the cat’s lateral geniculate nucleus,” J. Neurosci., 4, No. 1, 198–216 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowling, D. B. and Wieniawa-Narkiewicz, E., “Differences in the amplitude of X-cell responses as a function of depth in layer A of lateral geniculate nucleus in cat,” J. Physiol., 390, No. 1, 201–212 (1987).

    Article  PubMed Central  CAS  Google Scholar 

  • Bowling, D. B. and Wieniawa-Narkiewicz, E., “The distribution of on- and off-centre X- and Y-like cells in the A layers of the cat’s lateral geniculate nucleus,” J. Physiol., 375, 561–572 (1986).

    Article  PubMed Central  CAS  Google Scholar 

  • Boyd, J. D. and Matsubara, J. A., “Laminar and columnar patterns of geniculocortical projections in the cat: Relationship to cytochrome oxidase,” J. Comp. Neurol., 365, No. 4, 659–682 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Braastad, B. O. and Heggelund, P., “Development of spatial receptive-field organization and orientation selectivity in kitten striate cortex,” J. Neurophysiol., 53, No. 5, 1158–1178 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Bruce, L. L. and Stein, B. E., “Transient projections from the lateral geniculate to the posteromedial lateral suprasylvian visual cortex in kittens,” J. Comp. Neurol., 278, No. 2, 287–302 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Chapman, B., “Necessity for afferent activity to maintain eye-specific segregation in ferret lateral geniculate nucleus,” Science, 287, No. 5462, 2479–2482 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, C. and Regehr, W. G., “Developmental remodeling of the retinogeniculate synapse,” Neuron, 28, No. 3, 955–966 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Clarke, P. G. H., Martin, K. A. C., Whitteridge, D., and Rao, V. M., “The dorsal lateral geniculate nucleus of the sheep and its retinal connections,” Q. J. Exp. Physiol., 73, No. 3, 295–304 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Colby, C. L., “Corticotectal circuit in the cat: a functional analysis of the lateral geniculate nucleus layers of origin,” J. Neurophysiol., 59, No. 6, 1783–1797 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Coleman, L. A. and Friedlander, M. J., “Intracellular injections of permanent tracers in the fixed slice: a comparison of HRP and biocytin,” J. Neurosci. Methods, 44, No. 2–3, 167–177 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Coleman, L. A. and Friedlander, M. J., “Postnatal dendritic development of Y-like geniculocortical relay neurons,” Int. J. Dev. Neurosci., 20, No. 3–5, 137–159 (2002).

    Article  PubMed  Google Scholar 

  • Cragg, B. G., “The development of synapses in the visual system of the cat,” J. Comp. Neurol., 160, No. 2, 147–166 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Crair, M. C., Gillespie, D. C., and Stryker, M. P., “The role of visual experience in the development of columns in cat visual cortex,” Science, 279, No. 5350, 566–570 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crair, M. C., Horton, J. C., Antonini, A., and Stryker, M. P., “Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age,” J. Comp. Neurol., 430, No. 2, 235–249 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cynader, M., “Prolonged sensitivity to monocular deprivation in darkreared cats: Effects of age and visual exposure,” Dev. Brain Res., 8, No. 2–3, 155–164 (1983).

    Article  Google Scholar 

  • Dalva, M. B., Ghosh, A., and Shatz, C. J., “Independent control of dendritic and axonal form in the developing lateral geniculate nucleus,” J. Neurosci., 14, No. 6, 3588–3602 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels, J. D., Pettigrew, J. D., and Norman, J. L., “Development of singleneuron responses in kitten’s lateral geniculate nucleus,” J. Neurophysiol., 41, No. 6, 1373–1393 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Derrington, A. M. and Fuchs, A. F., “Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus,” J. Physiol., 293, No. 1, 347–364 (1979).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derrington, A. M. and Hawken, M. J., “Spatial and temporal properties of cat geniculate neurones after prolonged deprivation,” J. Physiol., 314, No. 1, 107–120 (1981).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doty, R. W., Glickstein, M., and Calvin, W. H., “Lamination of the lateral geniculate nucleus in the squirrel monkey, Saimiri sciureus,” J. Comp. Neurol., 127, No. 3, 335–340 (1966).

    Article  Google Scholar 

  • Dreher, B., Leventhal, A. G., and Hale, P. T., “Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18,” J. Neurophysiol., 44, No. 4, 804–826 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Dubin, M., Stark, L., and Archer, S., “A role for action-potential activity in the development of neuronal connections in the kitten retinogeniculate pathway,” J. Neurosci., 6, No. 4, 1021–1036 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duffy, K. R., Holman, K. D., and Mitchell, D. E., “Shrinkage of X cells in the lateral geniculate nucleus after monocular deprivation revealed by FoxP2 labeling,” Vis. Neurosci., 31, No. 3, 253–261 (2014).

    Article  PubMed  Google Scholar 

  • Duffy, K. R., Lingley, A. J., Holman, K. D., and Mitchell, D. E., “Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period,” J. Comp. Neurol., 524, No. 13, 2643–2653 (2016).

    Article  PubMed  Google Scholar 

  • Elgeti, H., Elgeti, R., and Fleischhauer, K., “Postnatal growth of the dorsal lateral geniculate nucleus of the cat,” Anat. Embryol. (Berl.), 149, No. 1, 1–13 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Enroth-Cugell, C. and Robson, J. G., “Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description,” Invest. Ophthalmol. Vis. Sci., 25, No. 3, 250–267 (1984).

    PubMed  CAS  Google Scholar 

  • Enroth-Cugell, C. and Robson, J. G., “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol., 187, No. 3, 517–552 (1966).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enroth-Cugell, C., Robson, J. G., Schweitzer-Tong, D. E., and Watson, A. B., “Spatio-temporal interactions in cat retinal ganglion cells showing linear spatial summation,” J. Physiol., 341, 279–307 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erişir, A., Van Horn, S. C., Sherman, S. M., et al., “Distribution of synapses in the lateral geniculate nucleus of the cat: Differences between laminae A and A1 and between relay cells and interneurons,” J. Comp. Neurol., 390, No. 2, 247–255 (1998).

    Article  PubMed  Google Scholar 

  • Espinosa, J. S. and Stryker, M. P., “Development and plasticity of the primary visual cortex,” Neuron, 75, No. 2, 230–249 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eysel, U. T. and Wolfhard, U., “Morphological fine tuning of retinotopy within the cat lateral geniculate nucleus,” Neurosci. Lett., 39, No. 1, 15–20 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Feller, M. B. and Scanziani, M., “A precritical period for plasticity in visual cortex,” Curr. Opin. Neurobiol., 15, No. 1, 94–100 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ferster, D. and Levy, S., “The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat,” J. Comp. Neurol., 182, No. 5, 923–944 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Firth, S. I., Wang, C. T., and Feller, M. B., “Retinal waves: Mechanisms and function in visual system development,” Cell Calcium, 37, No. 5, 425–432 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Frascella, J. and Lehmkuhle, S., “A comparison between Y-cells in A-laminae and lamina C of cat dorsal lateral geniculate nucleus,” J. Neurophysiol., 52, No. 5, 911–920 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Freeman, R. D. and Lai, C. E., “Development of the optical surfaces of the kitten eye,” Vision Res., 18, No. 4, 399–407 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F., Martin, K. A. C., and Whitteridge, D., “Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y- type thalamic afferents. I. Arborization patterns and quantitative distribution of postsynaptic elements,” J. Comp. Neurol., 242, No. 2, 263–274 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Friedlander, M. J. and Stanford, L. R., “Effects of monocular deprivation on the distribution of cell types in the LGNd: A sampling study with fine-tipped micropipettes,” Exp. Brain Res., 53, No. 2, 451–461 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Friedlander, M. J., “Structure of physiologically classified neurones in the kitten dorsal lateral geniculate nucleus,” Nature, 300, No. 5888, 180–183 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Friedlander, M. J., “The changing roles of neurons in the cortical subplate,” Front. Neuroanat., 3, 1–8 (2009).

    Article  Google Scholar 

  • Friedlander, M. J., Lin, C. S., and Sherman, S. M., “Structure of physiologically identified X and Y cells in the cat’s lateral geniculate nucleus,” Science, 204, No. 4397, 1114–1117 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Friedlander, M. J., Lin, C. S., Stanford, L. R., and Sherman, S. M., “Morphology of functionally identified neurons in lateral geniculate nucleus of the cat,” J. Neurophysiol., 46, No. 1, 80–129 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Friedlander, M. J., Martin, K. A., and Vahle-Hinz, C., “The structure of the terminal arborizations of physiologically identified retinal ganglion cell Y axons in the kitten,” J. Physiol., 359, No. 1, 293–313 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Friedlander, M. J., Stanford, L. R., and Sherman, S. M., “Effects of monocular deprivation on the structure-function relationship of individual neurons in the cat’s lateral geniculate nucleus,” J. Neurosci., 2, No. 3, 321–330 (1982).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garraghty, P. E., “Mixed cells in the cat lateral geniculate nucleus: Functional convergence or error in development?” Brain Behav. Evol., 26, No. 1, 58–64 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Garraghty, P. E., Frost, D. O., and Sur, M., “The morphology of retinogeniculate X-and Y-cell axonal arbors in dark-reared cats,” Exp. Brain Res., 66, No. 1, 85–92 (1987).

    Article  Google Scholar 

  • Garraghty, P. E., Roe, A., and Sur, M., “Specification of retinogeniculate X and Y axon arbors in cats: fundamental differences in developmental programs,” Brain Res. Dev. Brain Res., 107, No. 2, 227–231 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Geisert, E. E., “Cortical projections of the lateral geniculate nucleus in the cat,” J. Comp. Neurol., 190, No. 4, 793–812 (1980).

    Article  PubMed  Google Scholar 

  • Geisert, E. E., “The projection of the lateral geniculate nucleus to area 18,” J. Comp. Neurol., 238, No. 1, 101–106 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, A. and Shatz, C. J., “Pathfinding and target selection by developing geniculocortical axons,” J. Neurosci., 12, No. 1, 39–55 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert, C. D. and Kelly, J. P., “The projections of cells in different layers of the cat’s visual cortex,” J. Comp. Neurol., 163, No. 1, 81–105 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Graham, J., “An autoradiographic study of the efferent connections of the superior colliculus in the cat,” J. Comp. Neurol., 173, No. 4, 629–54 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Grubb, M. S. and Thompson, I. D., “Biochemical and anatomical subdivision of the dorsal lateral geniculate nucleus in normal mice and in mice lacking the β2 subunit of the nicotinic acetylcholine receptor,” Vision Res., 44, No. 28, 3365–3376 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Guillery, R. W., “A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat,” J. Comp. Neurol., 128, No. 1, 21–50 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Guillery, R. W., Geisert, E. E., Polley, E. H., and Mason, C. A., “An analysis of the retinal afferents to the cat’s medial interlaminar nucleus and to its rostral thalamic extension, the ‘geniculate wing,’” J. Comp. Neurol., 194, No. 1, 117–142 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Guimarães, A., Zaremba, S., Hockfield, S., et al., “Molecular and morphological changes in the cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-304 and Cat-301,” J. Neurosci., 10, No. 9, 3014–3024 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamasaki, D. I. and Flynn, J. T., “Physiological properties of retinal ganglion cells of 3-week-old kittens,” Vision Res., 17, No. 2, 275–284 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Hartline, H. K., “The response of single optic nerve fibers of the vertebrate eye to illumination of the retina,” Am. J. Physiol., 121, No. 2, 400–415 (1938).

    Article  Google Scholar 

  • Hayhow, W. R., “The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibers,” J. Comp. Neurol., 110, No. 1, 1–63 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O., The Organization of Behaviour, Wiley, New York (1949).

    Google Scholar 

  • Henderson, Z., “An anatomical investigation of projections from lateral geniculate nucleus to visual cortical areas 17 and 18 in newborn kitten,” Exp. Brain Res., 46, No. 2, 177–185 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Herbin, M., Miceli, D., Repérant, J., et al., “Postnatal development of thalamocortical projections upon striate and extrastriate visual cortical areas in the cat,” Anat. Embryol. (Berl.), 202, No. 5, 431–442 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hickey, T. L. and Hitchcock, P. F., “Genesis of neurons in the dorsal lateral geniculate nucleus of the cat,” J. Comp. Neurol., 228, No. 2, 186–199 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Hickey, T. L., “Development of the dorsal lateral geniculate nucleus in normal and visually deprived cats,” J. Comp. Neurol., 189, No. 3, 467–481 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Hickey, T. L., Spear, P. D., and Kratz, K. E., “Quantitative studies of cell size in the cat’s dorsal lateral geniculate nucleus following visual deprivation,” J. Comp. Neurol., 172, No. 2, 265–281 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, P. F., Hickey, T. L., and Dunkel, C. G., “Genesis of morphologically identified neurons in the dorsal lateral geniculate nucleus of the cat,” J. Comp. Neurol., 228, No. 2, 200–209 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K.-P. and Sireteanu, R., “Interlaminar differences in the effects of early and late monocular deprivation on the visual acuity of cells in the lateral geniculate nucleus of the cat,” Neurosci. Lett., 5, No. 3–4, 171–175 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann K.-P., Stone, J., and Sherman, S. M., “Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat,” J. Neurophysiol., 35, No. 4, 518–531 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Holländer, H. and Vanegas, H., “The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish-peroxidase,” J. Comp. Neurol., 173, No. 3, 519–536 (1977).

    Article  PubMed  Google Scholar 

  • Hooks, B. M. and Chen, C., “Distinct roles for spontaneous and visual activity in remodeling of the retinogeniculate synapse,” Neuron, 52, No. 2, 281–291 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D. H. and Wiesel, T. N., “The period of susceptibility to the physiological effects of unilateral eye closure in kittens,” J. Physiol., 206, No. 2, 419–36 (1970).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huberman, A. D., Feller, M. B., and Chapman, B., “Mechanisms underlying development of visual maps and receptive fields,” Annu. Rev. Neurosci., 31, No. 1, 479–509 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huberman, A. D., Murray, K. D., Warland, D. K., et al., “Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus,” Nat. Neurosci., 8, No. 8, 1013–1021 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huberman, A. D., Speer, C. M., and Chapman, B., “Spontaneous retinal activity mediates development of ocular dominance columns and binocular receptive fields in V1,” Neuron, 52, No. 2, 247–254 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Humphrey, A. L. and Weller, R. E., “Functionally distinct groups of X-cells in the lateral geniculate nucleus of the cat,” J. Comp. Neurol., 268, No. 3, 429–447 (1988a).

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, A. L., and Weller, R. E., “Structural correlates of functionally distinct X-cells in the lateral geniculate nucleus of the cat,” J. Comp. Neurol., 268, No. 3, 448–468 (1988b).

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, A. L., Sur, M., Uhlrich, D. J., and Sherman, S. M., “Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat,” J. Comp. Neurol., 233, No. 2, 159–189 (1985a).

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, A. L., Sur, M., Uhlrich, D. J., and Sherman, S. M., “Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: Projections to area 18, to the 17/18 border region, and to both areas 17 and 18,” J. Comp. Neurol., 233, No. 2, 190–212 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, H. and Tremain, K. E., “The development of spatial resolving power of lateral geniculate neurones in kittens,” Exp. Brain Res., 31, No. 2, 193–206 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Kageyama, G. H. and Wong-Riley, M. T. T., “The histochemical localization of cytochrome oxidase in the retina and lateral geniculate nucleus of the ferret, cat, and monkey, with particular reference to retinal mosaics and on/off-center visual channels,” J. Neurosci., 4, No. 10, 2445–2459 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalil, R., “Dark rearing in the cat: effects on visuomotor behavior and cell growth in the dorsal lateral geniculate nucleus,” J. Comp. Neurol., 178, No. 3, 451–467 (1978a).

    Article  PubMed  CAS  Google Scholar 

  • Kalil, R., “Development of the dorsal lateral geniculate nucleus in the cat,” J. Comp. Neurol., 182, No. 2, 265–291 (1978b).

    Article  PubMed  CAS  Google Scholar 

  • Kato, N., Kawaguchi, S., and Miyata, H., “Geniculocortical projection to layer I of area 17 in kittens: orthograde and retrograde HRP studies,” J. Comp. Neurol., 225, No. 3, 441–447 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Kawano, J., “Cortical projections of the parvocellular laminae C of the dorsal lateral geniculate nucleus in the cat: an anterograde wheat germ agglutinin conjugated to horseradish peroxidase study,” J. Comp. Neurol., 392, No. 4, 439–457 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, H., Salin, P., Bullier, J., and Horsburgh, G., “Topography of developing thalamic and cortical pathways in the visual system of the cat,” J. Comp. Neurol., 348, No. 2, 298–319 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kind, P. C., Beaver, C. J., and Mitchell, D. E., “Effects of early periods of monocular deprivation and reverse lid suture on the development of cat-301 immunoreactivity in the dorsal lateral geniculate nucleus (dLGN) of the cat,” J. Comp. Neurol., 359, No. 4, 523–536 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kratz, K. E., “Spatial and temporal sensitivity of lateral geniculate cells in dark-reared cats,” Brain Res., 251, No. 1, 55–63 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Kratz, K. E., Sherman, S. M., and Kalil, R., “Lateral geniculate nucleus in dark-reared cats: Loss of Y cells without changes in cell size,” Science, 203, No. 4387, 1353–1355 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Kratz, K. E., Webb, S. V., and Sherman, S. M., “Effects of early monocular lid suture upon neurons in the cat’s medial interlaminar nucleus,” J. Comp. Neurol., 181, No. 3, 615–625 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Kuffl er, S. W., “Discharge patterns and functional organization of mammalian retina,” J. Neurophysiol., 16, No. 1, 37–68 (1953).

  • Laemle, L., Benhamida, C., and Purpura, D. P., “Laminar distributio of geniculo-cortical afferents in visual cortex of the postnatal kitten,” Brain Res., 41, No. 1, 25–37 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Land, P. W. and Shamalla-Hannah, L., “Transient expression of synaptic zinc during development of uncrossed retinogeniculate projections,” J. Comp. Neurol., 433, No. 4, 515–525 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Le Vay, S. and McConnell, S. K., “ON and OFF layers in the lateral geniculate nucleus of the mink,” Nature, 300, No. 5890, 350–351 (1982).

    Article  Google Scholar 

  • Lee, D., Lee, C., and Malpeli, J. G., “Acuity-sensitivity trade-offs of X and Y cells in the cat lateral geniculate complex: role of the medial interlaminar nucleus in scotopic vision,” J. Neurophysiol., 68, No. 4, 1235–1247 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Lehmkuhle, S., Kratz, K. E., Mangel, S. C., and Sherman, S. M., “Effects of early monocular lid suture on spatial and temporal sensitivity of neurons in dorsal lateral geniculate nucleus of the cat,” J. Neurophysiol., 43, No. 2, 542–556 (1980).

    Article  PubMed  CAS  Google Scholar 

  • LeVay, S. and Ferster, D., “Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation,” J. Comp. Neurol., 172, No. 4, 563–584 (1977).

    Article  PubMed  CAS  Google Scholar 

  • LeVay, S. and Sherk, H., “The visual claustrum of the cat. I. Structure and connections,” J. Neurosci., 1, No. 9, 956–980 (1981).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • LeVay, S., Stryker, M. P., and Shatz, C. J., “Ocular dominance columns and their development in layer IV of the cat’s visual cortex: A quantitative study,” J. Comp. Neurol., 179, No. 1, 223–244 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A. G., “Evidence that the different classes of relay cells of the cat’s lateral geniculate nucleus terminate in different layers of the striate cortex,” Exp. Brain Res., 37, No. 2, 349–372 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Linden, D. C., Guillery, R. W., and Cucchiaro, J., “The dorsal lateral geniculate nucleus of the normal ferret and its postnatal development,” J. Comp. Neurol., 203, No. 2, 189–211 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Lingley, A. J., Mitchell, D. E., Crowder, N. A., and Duffy, K. R., “Modification of peak plasticity induced by brief dark exposure,” Neural Plast., 2019, 1–10 (2019).

    Article  Google Scholar 

  • Lo, F.-S., Ziburkus, J., and Guido, W., “Synaptic mechanisms regulating the activation of a Ca2+-mediated plateau potential in developing relay cells of the LGN,” J. Neurophysiol., 87, No. 3, 1175–1185 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Luskin, M. B. and Shatz, C. J., “Neurogenesis of the cat’s primary visual cortex,” J. Comp. Neurol., 242, No. 4, 611–631 (1985).

    Article  PubMed  CAS  Google Scholar 

  • MacNeil, M. A., Lomber, S. G., and Payne, B. R., “Thalamic and cortical projections to middle suprasylvian cortex of cats: Constancy and variation,” Exp. Brain Res., 114, No. 1, 24–32 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Mangel, S. C., Wilson, J. R., and Sherman, S. M., “Development of neuronal response properties in the cat dorsal lateral geniculate nucleus during monocular deprivation,” J. Neurophysiol., 50, No. 1, 240–264 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Manger, P. R., Restrepo, C. E., and Innocenti, G. M., “The superior colliculus of the ferret: Cortical afferents and efferent connections to dorsal thalamus,” Brain Res., 1353, 74–85 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Mason, C. A., “Development of terminal arbors of retino-geniculate axons in the kitten – I. Light microscopical observations,” Neuroscience, 7, No. 3, 541–559 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde, D. N., “Organization of the cat’s optic tract as assessed by single-axon recordings,” J. Comp. Neurol., 227, No. 1, 14–22 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde, D. N., “Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells,” J. Neurophysiol., 57, No. 2, 357–380 (1987).

    Article  PubMed  CAS  Google Scholar 

  • McConnell, S. K., Ghosh, A., and Shatz, C. J., “Subplate neurons pioneer the first axon pathway from the cerebral cortex,” Science, 245, No. 4921, 978–982 (1989).

    Article  PubMed  CAS  Google Scholar 

  • McConnell, S., Ghosh, A., and Shatz, C., “Subplate pioneers and the formation of descending connections from cerebral cortex,” J. Neurosci., 14, No. 4, 1892–1907 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meister, M., Wong, R. O., Baylor, D. A., and Shatz, C. J., “Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina,” Science, 252, No. 5008, 939–943 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Merkulyeva, N. S., “Conducting channels of the visual system. Basis for classification,” Zh. Vyssh. Nerv. Deyat., 69, No. 5, 541–549 (2019).

    Google Scholar 

  • Merkulyeva, N., Mikhalkin, A., and Zykin, P., “Early postnatal development of the lamination in the lateral geniculate nucleus A-layers in cats,” Cell. Mol. Neurobiol., 38, No. 5, 1137–1143 (2018).

    Article  PubMed  CAS  Google Scholar 

  • Mikhalkin, A. A. and Merkulyeva, N. S., “Peculiarities of age-related dynamics of neurons in the cat lateral geniculate nucleus as revealed in frontal versus sagittal slices,” J. Evol. Biochem. Physiol., 57, No. 5, 1001–1007 (2021).

    Article  Google Scholar 

  • Mikhalkin, A., Nikitina, N., and Merkulyeva, N., “Heterochrony of postnatal accumulation of nonphosphorylated heavy-chain neurofilament by neurons of the cat dorsal lateral geniculate nucleus,” J. Comp. Neurol., 529, No. 7, 1430–1441 (2021).

    Article  PubMed  CAS  Google Scholar 

  • Mitzdorf, U. and Singer, W., “Laminar segregation of afferents to lateral geniculate nucleus of the cat: an analysis of current source density,” J. Neurophysiol., 40, No. 6, 1227–1244 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Molnár, Z. and Blakemore, C., “How do thalamic axons find their way to the cortex?” Trends Neurosci., 18, No. 9, 389–397 (1995).

    Article  PubMed  Google Scholar 

  • Montero, V. M., “A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus,” Exp. Brain Res., 86, No. 2, 257–270 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Mower, G. D., Burchfiel, J. L., and Duffy, F. H., “The effects of dark-rearing on the development and plasticity of the lateral geniculate nucleus,” Dev. Brain Res., 1, No. 3, 418–424 (1981).

    Article  Google Scholar 

  • Mullen, R. J., Buck, C. R., and Smith, A. M., “NeuN, a neuronal specific nuclear protein in vertebrates,” Development, 116, No. 1, 201–211 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Murakami, D. M. and Wilson, P. D., “The development of soma size changes in the C-laminae of the cat lateral geniculate nucleus following monocular deprivation,” Dev. Brain Res., 35, No. 2, 215–224 (1987).

    Article  Google Scholar 

  • Murakami, D. M. and Wilson, P. D., “The effect of monocular deprivation on cells in the C-laminae of the cat lateral geniculate nucleus,” Dev. Brain Res., 9, No. 3, 353–358 (1983).

    Article  Google Scholar 

  • Murphy, P. and Sillito, A., “Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus,” J. Neurosci., 16, No. 3, 1180–1192 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy, P. C., Duckett, S. G., and Sillito, A. M., “Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat,” J. Neurosci., 20, No. 2, 845–853 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Najdzion, J., Wasilewska, B., Bogus-Nowakowska, K., et al., “A morphometric comparative study of the lateral geniculate body in selected placental mammals: the common shrew, the bank vole, the rabbit, and the fox,” Folia Morphol. (Warsz.), 68, No. 2, 70–78 (2009).

    PubMed  CAS  Google Scholar 

  • Niimi, K., Matsuoka, H., Yamazaki, Y., and Matsumoto, H., “Thalamic afferents to the visual cortex in the cat studied by retrograde axonal transport of horseradish peroxidase,” Brain Behav. Evol., 18, No. 3, 127–139 (1981).

    Article  Google Scholar 

  • Norman, J. L., Pettigrew, J. D., and Daniels, J. D., “Early development of X-cells in kitten lateral geniculate nucleus,” Science, 198, No. 4313, 202–204 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Olson, C. R. and Freeman, R. D., “Profile of the sensitive period for monocular deprivation in kittens,” Exp. Brain Res., 39, No. 1, 17–21 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Panikyan, K. K., Postnatal Development of the Area Centralis of the Cat Retina, Pavlov Institute of Physiology RAS, St. Petersburg, Russia (2009).

  • Payne, B. R. and Peters, A., “The concept of cat primary visual cortex,” in: The Cat Primary Visual Cortex, Payne, B. R. and Peters, A. (eds.),

  • Elsevier, San Diego, London, Boston, New York, Sydney, Tokyo, Toronto (2002), pp. 1–129.

  • Peters, A. and Palay, S. L., “The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat,” J. Anat, 100, No. 3, 451–486 (1966).

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeiffenberger, C., Yamada, J., and Feldheim, D. A., “Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system,” J. Neurosci., 26, No. 50, 12873–12884 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Portera-Cailliau, C., Pan, D. T., and Yuste, R., “Activity-regulated dynamic behavior of early dendritic protrusions: evidence for different types of dendritic filopodia,” J. Neurosci., 23, No. 18, 7129–7142 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raczkowski, D., Uhlrich, D. J., and Sherman, S. M., “Morphology of retinogeniculate X and Y axon arbors in cats raised with binocular lid suture,” J. Neurophysiol., 60, No. 6, 2152–2167 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Ramoa, A. and McCormick, D., “Enhanced activation of NMDA receptor responses at the immature retinogeniculate synapse,” J. Neurosci., 14, No. 4, 2098–2105 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rapaport, D. H. and Stone, J., “The area centralis of the retina in the cat and other mammals: Focal point for function and development of the visual system,” Neuroscience, 11, No. 2, 289–301 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Reese, B. E., “’Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat,” Brain Res. Rev., 13, No. 2, 119–137 (1988).

    Article  Google Scholar 

  • Reese, B. E., Guillery, R. W., Marzi, C. A., and Tassinari, G., “Position of axons in the cat’s optic tract in relation to their retinal origin and chiasmatic pathway,” J. Comp. Neurol., 306, No. 4, 539–553 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Rodieck, R. W., “Visual pathways,” Annu. Rev. Neurosci., 2, No. 1, 193–225 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist, A. C., Edwards, S. B., and Palmer, L. A., “An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat,” Brain Res., 80, No. 1, 71–93 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Rusoff, A. C. and Dubin, M. W., “Development of receptive-field properties of retinal ganglion cells in kittens,” J. Neurophysiol., 40, No. 5, 1188–1198 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, K. J., “The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat,” J. Comp. Neurol., 143, No. 1, 101–117 (1971a).

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, K. J., “Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat,” Exp. Brain Res., 13, No. 2, 159–177 (1971b).

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, K. J., Haight, J. R., and Pettigrew, J. D., “The dorsal lateral geniculate nucleus of macropodid marsupials: Cytoarchitecture and retinal projections,” J. Comp. Neurol., 224, No. 1, 85–106 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Sarnat, H. B., Nochlin, D., and Born, D. E., “Neuronal nuclear antigen (NeuN, a marker of neuronal maturation in early human fetal nervous system,” Brain Dev., 20, No. 2, 88–94 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Saul, A. B., “Lagged cells,” NeuroSignals, 16, No. 2–3, 209–225 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Shaffery, J. P., Roffwarg, H. P., Speciale, S. G., and Marks, G. A., “Pontogeniculo- occipital-wave suppression amplifies lateral geniculate nucleus cell-size changes in monocularly deprived kittens,” Dev. Brain Res., 114, No. 1, 109–119 (1999).

    Article  CAS  Google Scholar 

  • Shapley, R. and Hochstein, S., “Visual spatial summation in two classes of geniculate cells,” Nature, 256, No. 5516, 411–413 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Shatz, C. and Kirkwood, P., “Prenatal development of functional connections in the cat’s retinogeniculate pathway,” J. Neurosci., 4, No. 5, 1378–1397 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shatz, C. and Luskin, M., “The relationship between the geniculocortical afferents and their cortical target cells during development of the cat’s primary visual cortex,” J. Neurosci., 6, No. 12, 3655–3668 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shatz, C., “The prenatal development of the cat’s retinogeniculate pathway,” J. Neurosci., 3, No. 3, 482–499 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman, S. M. and Friedlander, M. J., “Identification of X versus Y properties for interneurons in the A-laminae of the cat’s lateral geniculate nucleus,” Exp. Brain Res., 73, No. 2, 384–392 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S. M. and Sherman, S. M., “Development of interocular alignment in cats,” Brain Res., 37, No. 2, 187–203 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S. M. and Spear, P. D., “Organization of visual pathways in normal and visually deprived cats,” Physiol. Rev., 62, No. 2, 738–855 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Sherman, S. M., “Development of retinal projections to the cat’s lateral geniculate nucleus,” Trends Neurosci., 8, 350–355 (1985).

    Article  Google Scholar 

  • Sherman, S. M., Hoffmann, K. P., and Stone, J., “Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats,” J. Neurophysiol., 35, No. 4, 532–541 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. and Bedworth, N., “Inhibitory interaction between X and Y units in the cat lateral geniculate nucleus,” Brain Res., 49, No. 2, 291–307 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Sireteanu, R. and Hoffmann, K.-P., “Relative frequency and visual resolution of X- and Y-cells in the LGN of normal and monocularly deprived cats: Interlaminar differences,” Exp. Brain Res., 34, No. 3, 591–603 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Spear, P. D., McCall, A., and Tumosa, N., “W- and Y-cells in the C layers of the cat’s lateral geniculate nucleus: Normal properties and effects of monocular deprivation,” J. Neurophysiol., 61, No. 1, 58–73 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Sretavan, D. W. and Shatz, C. J., “Axon trajectories and pattern of terminal arborization during the prenatal development of the cat’s retinogeniculate pathway,” J. Comp. Neurol., 255, No. 3, 386–400 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Sretavan, D. W. and Shatz, C. J., “Prenatal development of retinal ganglion cell axons: segregation into eye-specific layers within the cat’s lateral geniculate nucleus,” J. Neurosci., 6, No. 1, 234–251 (1986).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanford, L. R., Friedlander, M. J., and Sherman, S. M., “Morphology of physiologically identified W-cells in the C laminae of the cat’s lateral geniculate nucleus,” J. Neurosci., 1, No. 6, 578–584 (1981).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stone, J., Parallel Processing in the Visual System. The Classification of Retinal Ganglion Cells and Its Impact on the Neurobiology of Vision, Blakemore, C. (ed.), Plenum Press New York, London (1983).

  • Sur, M. and Sherman, S. M., “Retinogeniculate terminations in cats: morphological differences between X and Y cell axons,” Science, 218, No. 4570, 389–391 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., “Development and plasticity of retinal X and Y axon terminations in the cat’s lateral geniculate nucleus,” Brain Behav. Evol., 31, No. 4, 243–251 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., Esguerra, M., Garraghty, P. E., et al., “Morphology of physiologically identified retinogeniculate X- and Y-axons in the cat,” J. Neurophysiol., 58, No. 1, 1–32 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., Humphrey, A. L., and Sherman, S. M., “Monocular deprivation affects X- and Y-cell retinogeniculate terminations in cats,” Nature, 300, No. 5888, 183–185 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Sur, M., Weller, R. E., and Sherman, S. M., “Development of X- and Y-cell retinogeniculate terminations in kittens,” Nature, 310, No. 5974, 246–249 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Sutton, J. K., Brunso-Bechtold, J. K., Brunso-Bechtold, J. K., and Brunso-Bechtold, J. K., “A golgi study of dendritic development in the dorsal lateral geniculate nucleus of normal ferrets,” J. Comp. Neurol., 309, No. 1, 71–85 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Szentágothai, J., “Neuronal and synaptic architecture of the lateral geniculate nucleus,” in: Visual Centers in the Brain. Handbook of Sensory Physiology, Jung, R. (ed.), Springer, Berlin, Heidelberg (1973), pp. 141–176.

  • Szentágothai, J., “The modular architectonic principle of neural centers,” Rev. Physiol. Biochem. Pharmacol., 98, 11–61 (1983).

    Article  PubMed  Google Scholar 

  • Tamamaki, N., Uhlrich, D. J., and Sherman, S. M., “Morphology of physiologically identified retinal X and Y axons in the cat’s thalamus and midbrain as revealed by intraaxonal injection of biocytin,” J. Comp. Neurol., 354, No. 4, 583–607 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Tello, F., “Disposición macroscópica y estructura del cuerpo geniculado externo,” Trab. Lab. Invest. Biol. Univ. Madrid, 3, 39–62 (1904).

    Google Scholar 

  • Teo, L., Homman-Ludiye, J., Rodger, J., and Bourne, J. A., “Discrete ephrin-B1 expression by specific layers of the primate retinogeniculostriate system continues throughout postnatal and adult life,” J. Comp. Neurol., 520, No. 13, 2941–2956 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Thorn, F., Gollender, M., Erickson, P., et al., “The development of the kitten’s visual optics,” Vision Res., 16, No. 10, 1145–1149 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Tieman, S. B., Nickla, D. L., Gross, K., et al., “Effects of unequal alternating monocular exposure on the sizes of cells in the cat’s lateral geniculate nucleus,” J. Comp. Neurol., 225, No. 1, 119–128 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Torrealba, F., Guillery, R. W., Eysel, U., et al., “Studies of retinal representations within the cat’s optic tract,” J. Comp. Neurol., 211, No. 4, 377–396 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Tsumoto, T. and Suda, K., “Postnatal development of the corticofugal projection from striate cortex to lateral geniculate nucleus in kittens,” Dev. Brain Res., 4, No. 3, 323–332 (1982).

    Article  Google Scholar 

  • Turner, E. C., Sawyer, E. K., and Kaas, J. H., “Optic nerve, superior colliculus, visual thalamus, and primary visual cortex of the northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus),” J. Comp. Neurol., 525, No. 9, 2109–2132 (2017).

    Article  PubMed  CAS  Google Scholar 

  • Updyke, B. V., “The pattern of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat,” J. Comp. Neurol., 163, No. 4, 377–395 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Van Horn, S. C., Erişir, A., and Sherman, S. M., “Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat,” J. Comp. Neurol., 416, No. 4, 509–520 (2000).

    Article  PubMed  Google Scholar 

  • Vardalaki, D., Chung, K., and Harnett, M. T., “Filopodia are a structural substrate for silent synapses in adult neocortex,” Nature, 2022 612, No. 7939, 323–327.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C. and Guillery, R. W., “Age-related fiber order in the optic tract of the ferret,” J. Neurosci., 5, No. 11, 3061–3069 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walsh, C. and Guillery, R. W., “Fibre order in the pathways from the eye to the brain,” Trends Neurosci., 7, No. 6, 208–211 (1984).

    Article  Google Scholar 

  • Walsh, C. and Polley, E., “The topography of ganglion cell production in the cat’s retina,” J. Neurosci., 5, No. 3, 741–750 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walsh, C., Polley, E. H., Hickey, T. L., and Guillery, R. W., “Generation of cat retinal ganglion cells in relation to central pathways,” Nature, 302, No. 5909, 611–614 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Weber, A. J. and Kalil, R. E., “Development of corticogeniculate synapses in the cat,” J. Comp. Neurol., 264, No. 2, 171–192 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Weber, A. J., Kalil, R. E., and Hickey, T. L., “Genesis of interneurons in the dorsal lateral geniculate nucleus of the cat,” J. Comp. Neurol., 252, No. 3, 385–391 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Weyer, A. and Schilling, K., “Developmental and cell type-specific expression of the neuronal marker NeuN in the murine cerebellum,” J. Neurosci. Res., 73, No. 3, 400–409 (2003).

    Article  PubMed  CAS  Google Scholar 

  • White, C. A., Chalupa, L. M., et al., “Response properties in the dorsal lateral geniculate nucleus of the adult cat after interruption of prenatal binocular interactions,” J. Neurophysiol., 62, No. 5, 1039–1051 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Wiesel, T. N. and Hubel, D. H., “Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body,” J. Neurophysiol., 26, No. 6, 978–993 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W. and Rakic, P., “Elimination of neurons from the rhesus monkey’s lateral geniculate nucleus during development,” J. Comp. Neurol., 272, No. 3, 424–436 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. W., Bastiani, M. J., Lia, B., and Chalupa, L. M., “Growth cones, dying axons, and developmental fl uctuations in the fiber population of the cat’s optic nerve,” J. Comp. Neurol., 246, No. 1, 32–69 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J. R., Friedlander, M. J., Sherman, S. M., et al., “Fine structural morphology of identified X- and Y-cells in the cat’s lateral geniculate nucleus,” Proc. R. Soc. Lond. B. Biol. Sci., 221, No. 1225, 411–436 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Wilson, P. D., Rowe, M. H., and Stone, J., “Properties of relay cells in cat’s lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells,” J. Neurophysiol., 39, No. 6, 1193–1209 (1976).

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. O. L. and Hughes, A., “Developing neuronal populations of the cat retinal ganglion cell layer,” J. Comp. Neurol., 262, No. 4, 473–495 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Xu, X., Ichida, J. M., Allison, J. D., et al., “A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus),” J. Physiol., 531, No. 1, 203–218 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeh, C. I., Stoelzel, C. R., Weng, C., and Alonso, J. M., “Functional consequences of neuronal divergence within the retinogeniculate pathway,” J. Neurophysiol., 101, No. 4, 2166–2185 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh, C.-I., Stoelzel, C. R., and Alonso, J.-M., “Two different types of Y cells in the cat lateral geniculate nucleus,” J. Neurophysiol., 90, No. 3, 1852–1864 (2003).

    Article  PubMed  Google Scholar 

  • Zahs, K. R. and Stryker, M. P., “The projection of the visual field onto the lateral geniculate nucleus of the ferret,” J. Comp. Neurol., 241, No. 2, 210–224 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Ackman, J. B., Xu, H. P., and Crair, M. C., “Visual map development depends on the temporal pattern of binocular activity in mice,” Nat. Neurosci., 15, No. 2, 298–307 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Leventhal, A., and Thompson, K., “Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat,” J. Neurosci., 15, No. 1, 689–698 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Mikhalkin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 73, No. 3, pp. 311–333, May–June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhalkin, A.A., Merkulyeva, N.S. The Dorsal Nucleus of the Lateral Geniculate Body: Anatomy, Histology, Ontogenesis. Neurosci Behav Physi 53, 1410–1425 (2023). https://doi.org/10.1007/s11055-023-01534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01534-1

Keywords

Navigation