Skip to main content

Advertisement

Log in

Studies of Genetic Variants in Patients with Ischemic Stroke in Human Orthologs of Rat Genes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objectives. To study the associations of nine genetic variants with the risk of developing ischemic stroke (IS) and the dynamics of recovery from it using a protocol developed for seeking genomic markers based on a bioinformatics approach to the study of single nucleotide polymorphisms (SNP) in human orthologs of rat genes differentially expressed in conditions of induced cerebral ischemia. Materials and methods. We identified and analyzed nine SNP in 553 Russians (331 patients with IS and 222 controls). The National Institutes of Health Stroke Scale (NIHSS) was used to assess stroke severity. Functional recovery after stroke was assessed using the modified Rankin Scale (mRS). The principles for selecting the polymorphic markers analyzed in the study were defined according to the protocol developed in our previous work. Selected SNP tags were genotyped using the TaqMan real-time polymerase chain reaction (PCR). Results. Associations of SNP with both the risk of developing IS and the dynamics of recovery from it were studied. SNP rs66782529 (LGALS3) was associated with unfavorable stroke outcomes (p = 0.048). SNP rs62278647 and rs2316710 (PTX3) were significantly associated with the risk of developing IS (p = 0.000029 and p = 0.0025, respectively). These correlations for rs62278647 and rs2316710 were found only in women, suggesting a sex-related association of the PTX3 polymorphism. Conclusions. This study not only reveals some new genetic links to IS and its consequences, but also shows how studying gene variations in a rat model of cerebral ischemia can be useful in seeking genetic markers of this disease in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gusev, E. I., Martynov, M. Yu., Kamchatnov, P. R., et al., “Cerebral stroke,” Consilium Medicum, 16, No. 12, 13–17 (2014).

    Google Scholar 

  2. Gusev, E. I., Martynov, M. Yu., and Shamalov, N. A., et al., “Nonimmunogenic staphylokinase – a novel thrombolytic agent for the treatment of acute ischemic stroke (results from the FRIDA trial),” Zh. Nevrol. Psikhiatr., 122, No. 7, 56–65 (2022), https://doi.org/10.17116/jnevro202212207156.

  3. Khasanova, L. T., Stakhovskaya, L. V., Koltsova, E. A., and Shamalov, N. A., “Genetic characteristics of cerebral stroke,” Zh. Nevrol. Psikhiatr., 119, No. 12, Iss. 2, 65–72 (2019), https://doi.org/10.17116/jnevro201911912265.

  4. Chauhan, G. and Debette, S., “Genetic risk factors for ischemic and hemorrhagic stroke,” Curr. Cardiol. Rep., 18, 124 (2016), https://doi.org/https://doi.org/10.1007/s11886-016-0804-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Malik, R., Chauhan, G., Traylor, M., et al., “Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes,” Nat. Genet., 50, 524–537 (2018), https://doi.org/https://doi.org/10.1038/s41588-018-0058-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Lindgren, A. and Maguire, J., “Stroke recovery genetics,” Stroke, 47, 2427–2434 (2016), https://doi.org/https://doi.org/10.1161/STROKEAHA.116.010648.

    Article  PubMed  Google Scholar 

  7. Söderholm, M., Pedersen, A., Lorentzen, E., et al., “Genome-wide association meta-analysis of functional outcome after ischemic stroke,” Neurology, 92, 1271–1283 (2019), https://doi.org/https://doi.org/10.1212/WNL.0000000000007138.

    Article  CAS  Google Scholar 

  8. Gallagher, M. D. and Chen-Plotkin, A. S., “The post-GWAS era: From association to function,” Am. J. Hum. Genet., 102, 717–730 (2018), https://doi.org/https://doi.org/10.1016/j.ajhg.2018.04.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ma, R., Xie, Q., Li, Y., et al., “Animal models of cerebral ischemia: A review,” Biomed. Pharmacother., 131, 110686 (2020), https://doi.org/https://doi.org/10.1016/j.biopha.2020.110686.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, Y. and Cai, Y., “Obtaining human ischemic stroke gene expression biomarkers from animal models: A cross-species validation study,” Sci. Rep., 6, 29693 (2016), https://doi.org/https://doi.org/10.1038/srep29693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Brubaker, D. K. and Lauffenburger, D. A., “Translating preclinical models to humans,” Science, 367, No. 6479, 742–743 (2020), https://doi.org/https://doi.org/10.1126/science.aay8086.

    Article  PubMed  CAS  Google Scholar 

  12. Khvorykh, G., Khrunin, A., Filippenkov, I., et al., “A workflow for selection of single nucleotide polymorphic markers for studying of genetics of ischemic stroke outcomes,” Genes (Basel), 12, No. 3, 328 (2021), https://doi.org/https://doi.org/10.3390/genes12030328.

    Article  CAS  Google Scholar 

  13. Adams, H. P., Jr., Bendixen, B. H., Kappelle, L. J., et al., “Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment,” Stroke, 24, 35–41 (1993), https://doi.org/https://doi.org/10.1161/01.str.24.1.35.

    Article  PubMed  Google Scholar 

  14. Brott, T., Adams, H. P. Jr., Olinger, C. P., et al., “Measurements of acute cerebral infarction: A clinical examination scale,” Stroke, 20, 864–870 (1989), https://doi.org/https://doi.org/10.1161/01.str.20.7.864.

    Article  PubMed  CAS  Google Scholar 

  15. Ischemic Stroke and Transient Ischemic Attack in Adults: Clinical Recommendations (2021), https://cr.minzdrav.gov.ru/recomend/171_2.

  16. Milligan, B. G., “Total DNA isolation,” in: Molecular Genetic Analysis of Populations, A. Hoelzel (ed.), Oxford University Press, London (1998), https://doi.org/10.1046/j.1469-1809.1999.63302731.x.

  17. Wang, L., Zhang, W., and Li, Q., “AssocTests: An R package for genetic association studies,” J. Stat. Softw., 94, 1–26 (2020), https://doi.org/10.18637/jss.v094.i05.

  18. Sciacchitano, S., Lavra, L., Morgante, A., et al., “Galectin-3: One molecule for an alphabet of diseases, from A to Z.,” Int. J. Mol. Sci., 19, 379 (2018), https://doi.org/https://doi.org/10.3390/ijms19020379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Gao, Z., Liu, Z., Wang, R., et al., “Galectin-3 is a potential mediator for atherosclerosis,” J. Immunol. Res., 2020, 1–11 (2020), https://doi.org/https://doi.org/10.1155/2020/5284728.

    Article  CAS  Google Scholar 

  20. Shen, Y. F., Yu, W. H., Dong, X. Q., et al., “The change of plasmagalectin- 3 concentrations after traumatic brain injury,” Clin. Chim. Acta, 456, 75–80 (2016), https://doi.org/https://doi.org/10.1016/j.cca.2016.02.029.

    Article  PubMed  CAS  Google Scholar 

  21. Wang, Y., He, S., Liu, X., et al., “Galectin-3 mediated inflammatory response contributes to neurological recovery by QiShenYiQi in subacute stroke model,” Front. Pharmacol., 12, 588587 (2021), https://doi.org/https://doi.org/10.3389/fphar.2021.588587.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ward, L. D. and Kellis, M., “HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease,” Nucleic Acids Res., 44, 877–881 (2015), https://doi.org/https://doi.org/10.1093/nar/gkv1340.

    Article  CAS  Google Scholar 

  23. Boyle, A. P., Hong, E. L., Hariharan, M., et al., “Annotation of functional variation in personal genomes using RegulomeDB,” Genome Res., 22, 1790–1797 (2012), https://doi.org/https://doi.org/10.1101/gr.137323.112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bottazzi, B., Garlanda, C., and Teixeira, M. M., “Editorial: The role of pentraxins: From inflammation, tissue repair and immunity to biomarkers,” Front. Immunol., 10, 2817 (2019), https://doi.org/https://doi.org/10.3389/fimmu.2019.02817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Latini, R., Maggioni, A. P., Peri, G., et al., “Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, 110, 2349–2354 (2004), https://doi.org/https://doi.org/10.1161/01.CIR.0000145167.30987.2E.

    Article  PubMed  CAS  Google Scholar 

  26. Ryu, W. S., Kim, C. K., Kim, B. J., et al., “Pentraxin 3: A novel and independent prognostic marker in ischemic stroke,” Atherosclerosis, 220, 581–586 (2012), https://doi.org/https://doi.org/10.1016/j.atherosclerosis.2011.11.036.

    Article  PubMed  CAS  Google Scholar 

  27. Rodriguez-Grande, B., Varghese, L., Molina-Holgado, F., et al., “Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia,” J. Neuroinflammation, 12, 1–11 (2015), https://doi.org/https://doi.org/10.1186/s12974-014-0227-y.

    Article  CAS  Google Scholar 

  28. Oggioni, M., Mercurio, D., Minuta, D., et al., “Long pentraxin PTX3 is upregulated systemically and centrally after experimental neurotrauma, but its depletion leaves unaltered sensorimotor deficits or histopathology,” Sci. Rep., 11, 1–17 (2021), https://doi.org/https://doi.org/10.1038/s41598-021-89032-7.

    Article  CAS  Google Scholar 

  29. Rodriguez-Grande, B., Swana, M., Nguyen, L., et al., “The acutephase protein ptx3 is an essential mediator of glial scar formation and resolution of brain edema after ischemic injury,” Br. J. Pharmacol., 34, 480–488 (2013), https://doi.org/https://doi.org/10.1038/jcbfm.2013.224.

    Article  CAS  Google Scholar 

  30. el Melegy, E. K., Badr, E. A., el Kersh, A. M., et al., “Pentraxin 3 genotyping in relation to serum levels of pentraxin 3 in patients with acute ST-segment elevation myocardial infarction,” Clin. Trials Regul. Sci. Cardiol., 13, 6–13 (2016), https://doi.org/https://doi.org/10.1016/j.ctrsc.2015.11.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Koltsova.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 123, No. 3, Iss. 2, pp. 33–40, March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltsova, E.A., Petrova, E.A., Khrunin, A.V. et al. Studies of Genetic Variants in Patients with Ischemic Stroke in Human Orthologs of Rat Genes. Neurosci Behav Physi 53, 1366–1372 (2023). https://doi.org/10.1007/s11055-023-01527-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-023-01527-0

Keywords

Navigation